MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   Unicode version

Theorem vdwlem13 15022
Description: Lemma for vdw 15023. Main induction on  K;  K  = 
0,  K  =  1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r  |-  ( ph  ->  R  e.  Fin )
vdw.k  |-  ( ph  ->  K  e.  NN0 )
Assertion
Ref Expression
vdwlem13  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
Distinct variable groups:    ph, n, f   
f, K, n    R, f, n    ph, f

Proof of Theorem vdwlem13
Dummy variables  a 
c  d  g  k  m  x  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 11258 . . 3  |-  ( K  e.  NN  <->  ( K  =  1  \/  K  e.  ( ZZ>= `  2 )
) )
2 vdw.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Fin )
3 ovex 6336 . . . . . . . . . 10  |-  ( 1 ... 1 )  e. 
_V
4 elmapg 7503 . . . . . . . . . 10  |-  ( ( R  e.  Fin  /\  ( 1 ... 1
)  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... 1 ) )  <-> 
f : ( 1 ... 1 ) --> R ) )
52, 3, 4sylancl 675 . . . . . . . . 9  |-  ( ph  ->  ( f  e.  ( R  ^m  ( 1 ... 1 ) )  <-> 
f : ( 1 ... 1 ) --> R ) )
65biimpa 492 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  f :
( 1 ... 1
) --> R )
7 1nn 10642 . . . . . . . . . 10  |-  1  e.  NN
8 vdwap1 15006 . . . . . . . . . 10  |-  ( ( 1  e.  NN  /\  1  e.  NN )  ->  ( 1 (AP ` 
1 ) 1 )  =  { 1 } )
97, 7, 8mp2an 686 . . . . . . . . 9  |-  ( 1 (AP `  1 ) 1 )  =  {
1 }
10 1z 10991 . . . . . . . . . . . 12  |-  1  e.  ZZ
11 elfz3 11835 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ( 1 ... 1
) )
1210, 11mp1i 13 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
1  e.  ( 1 ... 1 ) )
13 eqidd 2472 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( f `  1
)  =  ( f `
 1 ) )
14 ffn 5739 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... 1 ) --> R  -> 
f  Fn  ( 1 ... 1 ) )
1514adantl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
f  Fn  ( 1 ... 1 ) )
16 fniniseg 6018 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... 1 )  ->  (
1  e.  ( `' f " { ( f `  1 ) } )  <->  ( 1  e.  ( 1 ... 1 )  /\  (
f `  1 )  =  ( f ` 
1 ) ) ) )
1715, 16syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( 1  e.  ( `' f " {
( f `  1
) } )  <->  ( 1  e.  ( 1 ... 1 )  /\  (
f `  1 )  =  ( f ` 
1 ) ) ) )
1812, 13, 17mpbir2and 936 . . . . . . . . . 10  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
1  e.  ( `' f " { ( f `  1 ) } ) )
1918snssd 4108 . . . . . . . . 9  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  ->  { 1 }  C_  ( `' f " {
( f `  1
) } ) )
209, 19syl5eqss 3462 . . . . . . . 8  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
216, 20syldan 478 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( 1 (AP `  1 ) 1 )  C_  ( `' f " {
( f `  1
) } ) )
2221ralrimiva 2809 . . . . . 6  |-  ( ph  ->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
23 fveq2 5879 . . . . . . . . 9  |-  ( K  =  1  ->  (AP `  K )  =  (AP
`  1 ) )
2423oveqd 6325 . . . . . . . 8  |-  ( K  =  1  ->  (
1 (AP `  K
) 1 )  =  ( 1 (AP ` 
1 ) 1 ) )
2524sseq1d 3445 . . . . . . 7  |-  ( K  =  1  ->  (
( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  1 ) 1 )  C_  ( `' f " { ( f `
 1 ) } ) ) )
2625ralbidv 2829 . . . . . 6  |-  ( K  =  1  ->  ( A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  <->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) ) )
2722, 26syl5ibrcom 230 . . . . 5  |-  ( ph  ->  ( K  =  1  ->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) ) )
28 oveq1 6315 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
a (AP `  K
) d )  =  ( 1 (AP `  K ) d ) )
2928sseq1d 3445 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( a (AP `  K ) d ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
30 oveq2 6316 . . . . . . . . . . . 12  |-  ( d  =  1  ->  (
1 (AP `  K
) d )  =  ( 1 (AP `  K ) 1 ) )
3130sseq1d 3445 . . . . . . . . . . 11  |-  ( d  =  1  ->  (
( 1 (AP `  K ) d ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  K ) 1 )  C_  ( `' f " { ( f `
 1 ) } ) ) )
3229, 31rspc2ev 3149 . . . . . . . . . 10  |-  ( ( 1  e.  NN  /\  1  e.  NN  /\  (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } ) )  ->  E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } ) )
337, 7, 32mp3an12 1380 . . . . . . . . 9  |-  ( ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } ) )
34 fvex 5889 . . . . . . . . . 10  |-  ( f `
 1 )  e. 
_V
35 sneq 3969 . . . . . . . . . . . . 13  |-  ( c  =  ( f ` 
1 )  ->  { c }  =  { ( f `  1 ) } )
3635imaeq2d 5174 . . . . . . . . . . . 12  |-  ( c  =  ( f ` 
1 )  ->  ( `' f " {
c } )  =  ( `' f " { ( f ` 
1 ) } ) )
3736sseq2d 3446 . . . . . . . . . . 11  |-  ( c  =  ( f ` 
1 )  ->  (
( a (AP `  K ) d ) 
C_  ( `' f
" { c } )  <->  ( a (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
38372rexbidv 2897 . . . . . . . . . 10  |-  ( c  =  ( f ` 
1 )  ->  ( E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
c } )  <->  E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
3934, 38spcev 3127 . . . . . . . . 9  |-  ( E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } )  ->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) )
4033, 39syl 17 . . . . . . . 8  |-  ( ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) )
41 vdw.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN0 )
4241adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  K  e.  NN0 )
433, 42, 6vdwmc 15007 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( K MonoAP  f  <->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) ) )
4440, 43syl5ibr 229 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  K MonoAP  f ) )
4544ralimdva 2805 . . . . . 6  |-  ( ph  ->  ( A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  ->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) K MonoAP  f ) )
46 oveq2 6316 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
4746oveq2d 6324 . . . . . . . . 9  |-  ( n  =  1  ->  ( R  ^m  ( 1 ... n ) )  =  ( R  ^m  (
1 ... 1 ) ) )
4847raleqdv 2979 . . . . . . . 8  |-  ( n  =  1  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) K MonoAP  f ) )
4948rspcev 3136 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) K MonoAP 
f )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f )
507, 49mpan 684 . . . . . 6  |-  ( A. f  e.  ( R  ^m  ( 1 ... 1
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
5145, 50syl6 33 . . . . 5  |-  ( ph  ->  ( A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
5227, 51syld 44 . . . 4  |-  ( ph  ->  ( K  =  1  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
53 breq1 4398 . . . . . . . 8  |-  ( x  =  2  ->  (
x MonoAP  f  <->  2 MonoAP  f )
)
5453rexralbidv 2898 . . . . . . 7  |-  ( x  =  2  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) 2 MonoAP 
f ) )
5554ralbidv 2829 . . . . . 6  |-  ( x  =  2  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f ) )
56 breq1 4398 . . . . . . . 8  |-  ( x  =  k  ->  (
x MonoAP  f  <->  k MonoAP  f )
)
5756rexralbidv 2898 . . . . . . 7  |-  ( x  =  k  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f ) )
5857ralbidv 2829 . . . . . 6  |-  ( x  =  k  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f ) )
59 breq1 4398 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
x MonoAP  f  <->  ( k  +  1 ) MonoAP  f ) )
6059rexralbidv 2898 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) ( k  +  1 ) MonoAP 
f ) )
6160ralbidv 2829 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
62 breq1 4398 . . . . . . . 8  |-  ( x  =  K  ->  (
x MonoAP  f  <->  K MonoAP  f )
)
6362rexralbidv 2898 . . . . . . 7  |-  ( x  =  K  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
6463ralbidv 2829 . . . . . 6  |-  ( x  =  K  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) K MonoAP  f ) )
65 hashcl 12576 . . . . . . . . . 10  |-  ( r  e.  Fin  ->  ( # `
 r )  e. 
NN0 )
66 nn0p1nn 10933 . . . . . . . . . 10  |-  ( (
# `  r )  e.  NN0  ->  ( ( # `
 r )  +  1 )  e.  NN )
6765, 66syl 17 . . . . . . . . 9  |-  ( r  e.  Fin  ->  (
( # `  r )  +  1 )  e.  NN )
68 simpll 768 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  r  e.  Fin )
69 simplr 770 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )
70 vex 3034 . . . . . . . . . . . . . 14  |-  r  e. 
_V
71 ovex 6336 . . . . . . . . . . . . . 14  |-  ( 1 ... ( ( # `  r )  +  1 ) )  e.  _V
7270, 71elmap 7518 . . . . . . . . . . . . 13  |-  ( f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) )  <->  f : ( 1 ... ( (
# `  r )  +  1 ) ) --> r )
7369, 72sylib 201 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  f : ( 1 ... ( ( # `  r )  +  1 ) ) --> r )
74 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  -.  2 MonoAP  f )
7568, 73, 74vdwlem12 15021 . . . . . . . . . . 11  |-  -.  (
( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )
76 iman 431 . . . . . . . . . . 11  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  -> 
2 MonoAP  f )  <->  -.  (
( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )
)
7775, 76mpbir 214 . . . . . . . . . 10  |-  ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) ) )  ->  2 MonoAP  f )
7877ralrimiva 2809 . . . . . . . . 9  |-  ( r  e.  Fin  ->  A. f  e.  ( r  ^m  (
1 ... ( ( # `  r )  +  1 ) ) ) 2 MonoAP 
f )
79 oveq2 6316 . . . . . . . . . . . 12  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( 1 ... n )  =  ( 1 ... (
( # `  r )  +  1 ) ) )
8079oveq2d 6324 . . . . . . . . . . 11  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( r  ^m  ( 1 ... n
) )  =  ( r  ^m  ( 1 ... ( ( # `  r )  +  1 ) ) ) )
8180raleqdv 2979 . . . . . . . . . 10  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( A. f  e.  ( r  ^m  ( 1 ... n
) ) 2 MonoAP  f  <->  A. f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) 2 MonoAP  f
) )
8281rspcev 3136 . . . . . . . . 9  |-  ( ( ( ( # `  r
)  +  1 )  e.  NN  /\  A. f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) ) 2 MonoAP  f )  ->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) 2 MonoAP 
f )
8367, 78, 82syl2anc 673 . . . . . . . 8  |-  ( r  e.  Fin  ->  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f )
8483rgen 2766 . . . . . . 7  |-  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f
8584a1i 11 . . . . . 6  |-  ( 2  e.  ZZ  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f )
86 oveq1 6315 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
r  ^m  ( 1 ... n ) )  =  ( s  ^m  ( 1 ... n
) ) )
8786raleqdv 2979 . . . . . . . . . 10  |-  ( r  =  s  ->  ( A. f  e.  (
r  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f ) )
8887rexbidv 2892 . . . . . . . . 9  |-  ( r  =  s  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n ) ) k MonoAP 
f ) )
89 oveq2 6316 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
9089oveq2d 6324 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
s  ^m  ( 1 ... n ) )  =  ( s  ^m  ( 1 ... m
) ) )
9190raleqdv 2979 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. f  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  f ) )
92 breq2 4399 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
k MonoAP  f  <->  k MonoAP  g )
)
9392cbvralv 3005 . . . . . . . . . . 11  |-  ( A. f  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  f  <->  A. g  e.  ( s  ^m  ( 1 ... m ) ) k MonoAP 
g )
9491, 93syl6bb 269 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g ) )
9594cbvrexv 3006 . . . . . . . . 9  |-  ( E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) k MonoAP  f  <->  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)
9688, 95syl6bb 269 . . . . . . . 8  |-  ( r  =  s  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f  <->  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m ) ) k MonoAP 
g ) )
9796cbvralv 3005 . . . . . . 7  |-  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f  <->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
98 simplr 770 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  r  e.  Fin )
99 simpll 768 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  k  e.  ( ZZ>= `  2 )
)
100 simpr 468 . . . . . . . . . . 11  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
10195ralbii 2823 . . . . . . . . . . 11  |-  ( A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f  <->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
102100, 101sylibr 217 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f )
10398, 99, 102vdwlem11 15020 . . . . . . . . 9  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f )
104103ex 441 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  r  e.  Fin )  ->  ( A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g  ->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) ( k  +  1 ) MonoAP 
f ) )
105104ralrimdva 2812 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
10697, 105syl5bi 225 . . . . . 6  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
10755, 58, 61, 64, 85, 106uzind4 11240 . . . . 5  |-  ( K  e.  ( ZZ>= `  2
)  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) K MonoAP  f )
108 oveq1 6315 . . . . . . . 8  |-  ( r  =  R  ->  (
r  ^m  ( 1 ... n ) )  =  ( R  ^m  ( 1 ... n
) ) )
109108raleqdv 2979 . . . . . . 7  |-  ( r  =  R  ->  ( A. f  e.  (
r  ^m  ( 1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
110109rexbidv 2892 . . . . . 6  |-  ( r  =  R  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
111110rspcv 3132 . . . . 5  |-  ( R  e.  Fin  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
1122, 107, 111syl2im 38 . . . 4  |-  ( ph  ->  ( K  e.  (
ZZ>= `  2 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
11352, 112jaod 387 . . 3  |-  ( ph  ->  ( ( K  =  1  \/  K  e.  ( ZZ>= `  2 )
)  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
1141, 113syl5bi 225 . 2  |-  ( ph  ->  ( K  e.  NN  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
115 fveq2 5879 . . . . . . 7  |-  ( K  =  0  ->  (AP `  K )  =  (AP
`  0 ) )
116115oveqd 6325 . . . . . 6  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  =  ( 1 (AP ` 
0 ) 1 ) )
117 vdwap0 15005 . . . . . . 7  |-  ( ( 1  e.  NN  /\  1  e.  NN )  ->  ( 1 (AP ` 
0 ) 1 )  =  (/) )
1187, 7, 117mp2an 686 . . . . . 6  |-  ( 1 (AP `  0 ) 1 )  =  (/)
119116, 118syl6eq 2521 . . . . 5  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  =  (/) )
120 0ss 3766 . . . . 5  |-  (/)  C_  ( `' f " {
( f `  1
) } )
121119, 120syl6eqss 3468 . . . 4  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } ) )
122121ralrimivw 2810 . . 3  |-  ( K  =  0  ->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
123122, 51syl5 32 . 2  |-  ( ph  ->  ( K  =  0  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
124 elnn0 10895 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
12541, 124sylib 201 . 2  |-  ( ph  ->  ( K  e.  NN  \/  K  =  0
) )
126114, 123, 125mpjaod 388 1  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   E.wrex 2757   _Vcvv 3031    C_ wss 3390   (/)c0 3722   {csn 3959   class class class wbr 4395   `'ccnv 4838   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   Fincfn 7587   0cc0 9557   1c1 9558    + caddc 9560   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   #chash 12553  APcvdwa 14994   MonoAP cvdwm 14995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-hash 12554  df-vdwap 14997  df-vdwmc 14998  df-vdwpc 14999
This theorem is referenced by:  vdw  15023
  Copyright terms: Public domain W3C validator