MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Unicode version

Theorem vdwlem13 14050
Description: Lemma for vdw 14051. Main induction on  K;  K  = 
0,  K  =  1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r  |-  ( ph  ->  R  e.  Fin )
vdw.k  |-  ( ph  ->  K  e.  NN0 )
Assertion
Ref Expression
vdwlem13  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
Distinct variable groups:    ph, n, f   
f, K, n    R, f, n    ph, f

Proof of Theorem vdwlem13
Dummy variables  a 
c  d  g  k  m  x  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 10927 . . 3  |-  ( K  e.  NN  <->  ( K  =  1  \/  K  e.  ( ZZ>= `  2 )
) )
2 vdw.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Fin )
3 ovex 6115 . . . . . . . . . 10  |-  ( 1 ... 1 )  e. 
_V
4 elmapg 7223 . . . . . . . . . 10  |-  ( ( R  e.  Fin  /\  ( 1 ... 1
)  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... 1 ) )  <-> 
f : ( 1 ... 1 ) --> R ) )
52, 3, 4sylancl 657 . . . . . . . . 9  |-  ( ph  ->  ( f  e.  ( R  ^m  ( 1 ... 1 ) )  <-> 
f : ( 1 ... 1 ) --> R ) )
65biimpa 481 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  f :
( 1 ... 1
) --> R )
7 1nn 10329 . . . . . . . . . 10  |-  1  e.  NN
8 vdwap1 14034 . . . . . . . . . 10  |-  ( ( 1  e.  NN  /\  1  e.  NN )  ->  ( 1 (AP ` 
1 ) 1 )  =  { 1 } )
97, 7, 8mp2an 667 . . . . . . . . 9  |-  ( 1 (AP `  1 ) 1 )  =  {
1 }
10 1z 10672 . . . . . . . . . . . 12  |-  1  e.  ZZ
11 elfz3 11457 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ( 1 ... 1
) )
1210, 11mp1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
1  e.  ( 1 ... 1 ) )
13 eqidd 2442 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( f `  1
)  =  ( f `
 1 ) )
14 ffn 5556 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... 1 ) --> R  -> 
f  Fn  ( 1 ... 1 ) )
1514adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
f  Fn  ( 1 ... 1 ) )
16 fniniseg 5821 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... 1 )  ->  (
1  e.  ( `' f " { ( f `  1 ) } )  <->  ( 1  e.  ( 1 ... 1 )  /\  (
f `  1 )  =  ( f ` 
1 ) ) ) )
1715, 16syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( 1  e.  ( `' f " {
( f `  1
) } )  <->  ( 1  e.  ( 1 ... 1 )  /\  (
f `  1 )  =  ( f ` 
1 ) ) ) )
1812, 13, 17mpbir2and 908 . . . . . . . . . 10  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
1  e.  ( `' f " { ( f `  1 ) } ) )
1918snssd 4015 . . . . . . . . 9  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  ->  { 1 }  C_  ( `' f " {
( f `  1
) } ) )
209, 19syl5eqss 3397 . . . . . . . 8  |-  ( (
ph  /\  f :
( 1 ... 1
) --> R )  -> 
( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
216, 20syldan 467 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( 1 (AP `  1 ) 1 )  C_  ( `' f " {
( f `  1
) } ) )
2221ralrimiva 2797 . . . . . 6  |-  ( ph  ->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
23 fveq2 5688 . . . . . . . . 9  |-  ( K  =  1  ->  (AP `  K )  =  (AP
`  1 ) )
2423oveqd 6107 . . . . . . . 8  |-  ( K  =  1  ->  (
1 (AP `  K
) 1 )  =  ( 1 (AP ` 
1 ) 1 ) )
2524sseq1d 3380 . . . . . . 7  |-  ( K  =  1  ->  (
( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  1 ) 1 )  C_  ( `' f " { ( f `
 1 ) } ) ) )
2625ralbidv 2733 . . . . . 6  |-  ( K  =  1  ->  ( A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  <->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP ` 
1 ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) ) )
2722, 26syl5ibrcom 222 . . . . 5  |-  ( ph  ->  ( K  =  1  ->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) ) )
28 oveq1 6097 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
a (AP `  K
) d )  =  ( 1 (AP `  K ) d ) )
2928sseq1d 3380 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( a (AP `  K ) d ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
30 oveq2 6098 . . . . . . . . . . . 12  |-  ( d  =  1  ->  (
1 (AP `  K
) d )  =  ( 1 (AP `  K ) 1 ) )
3130sseq1d 3380 . . . . . . . . . . 11  |-  ( d  =  1  ->  (
( 1 (AP `  K ) d ) 
C_  ( `' f
" { ( f `
 1 ) } )  <->  ( 1 (AP
`  K ) 1 )  C_  ( `' f " { ( f `
 1 ) } ) ) )
3229, 31rspc2ev 3078 . . . . . . . . . 10  |-  ( ( 1  e.  NN  /\  1  e.  NN  /\  (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } ) )  ->  E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } ) )
337, 7, 32mp3an12 1299 . . . . . . . . 9  |-  ( ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } ) )
34 fvex 5698 . . . . . . . . . 10  |-  ( f `
 1 )  e. 
_V
35 sneq 3884 . . . . . . . . . . . . 13  |-  ( c  =  ( f ` 
1 )  ->  { c }  =  { ( f `  1 ) } )
3635imaeq2d 5166 . . . . . . . . . . . 12  |-  ( c  =  ( f ` 
1 )  ->  ( `' f " {
c } )  =  ( `' f " { ( f ` 
1 ) } ) )
3736sseq2d 3381 . . . . . . . . . . 11  |-  ( c  =  ( f ` 
1 )  ->  (
( a (AP `  K ) d ) 
C_  ( `' f
" { c } )  <->  ( a (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
38372rexbidv 2756 . . . . . . . . . 10  |-  ( c  =  ( f ` 
1 )  ->  ( E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
c } )  <->  E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { ( f `
 1 ) } ) ) )
3934, 38spcev 3061 . . . . . . . . 9  |-  ( E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' f " {
( f `  1
) } )  ->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) )
4033, 39syl 16 . . . . . . . 8  |-  ( ( 1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) )
41 vdw.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN0 )
4241adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  K  e.  NN0 )
433, 42, 6vdwmc 14035 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( K MonoAP  f  <->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' f " { c } ) ) )
4440, 43syl5ibr 221 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( R  ^m  (
1 ... 1 ) ) )  ->  ( (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } )  ->  K MonoAP  f ) )
4544ralimdva 2792 . . . . . 6  |-  ( ph  ->  ( A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  ->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) K MonoAP  f ) )
46 oveq2 6098 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
4746oveq2d 6106 . . . . . . . . 9  |-  ( n  =  1  ->  ( R  ^m  ( 1 ... n ) )  =  ( R  ^m  (
1 ... 1 ) ) )
4847raleqdv 2921 . . . . . . . 8  |-  ( n  =  1  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) K MonoAP  f ) )
4948rspcev 3070 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. f  e.  ( R  ^m  ( 1 ... 1 ) ) K MonoAP 
f )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f )
507, 49mpan 665 . . . . . 6  |-  ( A. f  e.  ( R  ^m  ( 1 ... 1
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
5145, 50syl6 33 . . . . 5  |-  ( ph  ->  ( A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
5227, 51syld 44 . . . 4  |-  ( ph  ->  ( K  =  1  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
53 breq1 4292 . . . . . . . 8  |-  ( x  =  2  ->  (
x MonoAP  f  <->  2 MonoAP  f )
)
5453rexralbidv 2757 . . . . . . 7  |-  ( x  =  2  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) 2 MonoAP 
f ) )
5554ralbidv 2733 . . . . . 6  |-  ( x  =  2  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f ) )
56 breq1 4292 . . . . . . . 8  |-  ( x  =  k  ->  (
x MonoAP  f  <->  k MonoAP  f )
)
5756rexralbidv 2757 . . . . . . 7  |-  ( x  =  k  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f ) )
5857ralbidv 2733 . . . . . 6  |-  ( x  =  k  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f ) )
59 breq1 4292 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
x MonoAP  f  <->  ( k  +  1 ) MonoAP  f ) )
6059rexralbidv 2757 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) ( k  +  1 ) MonoAP 
f ) )
6160ralbidv 2733 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
62 breq1 4292 . . . . . . . 8  |-  ( x  =  K  ->  (
x MonoAP  f  <->  K MonoAP  f )
)
6362rexralbidv 2757 . . . . . . 7  |-  ( x  =  K  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) x MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
6463ralbidv 2733 . . . . . 6  |-  ( x  =  K  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) x MonoAP  f  <->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) K MonoAP  f ) )
65 hashcl 12122 . . . . . . . . . 10  |-  ( r  e.  Fin  ->  ( # `
 r )  e. 
NN0 )
66 nn0p1nn 10615 . . . . . . . . . 10  |-  ( (
# `  r )  e.  NN0  ->  ( ( # `
 r )  +  1 )  e.  NN )
6765, 66syl 16 . . . . . . . . 9  |-  ( r  e.  Fin  ->  (
( # `  r )  +  1 )  e.  NN )
68 simpll 748 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  r  e.  Fin )
69 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )
70 vex 2973 . . . . . . . . . . . . . 14  |-  r  e. 
_V
71 ovex 6115 . . . . . . . . . . . . . 14  |-  ( 1 ... ( ( # `  r )  +  1 ) )  e.  _V
7270, 71elmap 7237 . . . . . . . . . . . . 13  |-  ( f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) )  <->  f : ( 1 ... ( (
# `  r )  +  1 ) ) --> r )
7369, 72sylib 196 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  f : ( 1 ... ( ( # `  r )  +  1 ) ) --> r )
74 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )  ->  -.  2 MonoAP  f )
7568, 73, 74vdwlem12 14049 . . . . . . . . . . 11  |-  -.  (
( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )
76 iman 424 . . . . . . . . . . 11  |-  ( ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  -> 
2 MonoAP  f )  <->  -.  (
( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) )  /\  -.  2 MonoAP  f )
)
7775, 76mpbir 209 . . . . . . . . . 10  |-  ( ( r  e.  Fin  /\  f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) ) )  ->  2 MonoAP  f )
7877ralrimiva 2797 . . . . . . . . 9  |-  ( r  e.  Fin  ->  A. f  e.  ( r  ^m  (
1 ... ( ( # `  r )  +  1 ) ) ) 2 MonoAP 
f )
79 oveq2 6098 . . . . . . . . . . . 12  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( 1 ... n )  =  ( 1 ... (
( # `  r )  +  1 ) ) )
8079oveq2d 6106 . . . . . . . . . . 11  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( r  ^m  ( 1 ... n
) )  =  ( r  ^m  ( 1 ... ( ( # `  r )  +  1 ) ) ) )
8180raleqdv 2921 . . . . . . . . . 10  |-  ( n  =  ( ( # `  r )  +  1 )  ->  ( A. f  e.  ( r  ^m  ( 1 ... n
) ) 2 MonoAP  f  <->  A. f  e.  ( r  ^m  ( 1 ... ( ( # `  r
)  +  1 ) ) ) 2 MonoAP  f
) )
8281rspcev 3070 . . . . . . . . 9  |-  ( ( ( ( # `  r
)  +  1 )  e.  NN  /\  A. f  e.  ( r  ^m  ( 1 ... (
( # `  r )  +  1 ) ) ) 2 MonoAP  f )  ->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) 2 MonoAP 
f )
8367, 78, 82syl2anc 656 . . . . . . . 8  |-  ( r  e.  Fin  ->  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f )
8483rgen 2779 . . . . . . 7  |-  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f
8584a1i 11 . . . . . 6  |-  ( 2  e.  ZZ  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) 2 MonoAP  f )
86 oveq1 6097 . . . . . . . . . . 11  |-  ( r  =  s  ->  (
r  ^m  ( 1 ... n ) )  =  ( s  ^m  ( 1 ... n
) ) )
8786raleqdv 2921 . . . . . . . . . 10  |-  ( r  =  s  ->  ( A. f  e.  (
r  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f ) )
8887rexbidv 2734 . . . . . . . . 9  |-  ( r  =  s  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n ) ) k MonoAP 
f ) )
89 oveq2 6098 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
9089oveq2d 6106 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
s  ^m  ( 1 ... n ) )  =  ( s  ^m  ( 1 ... m
) ) )
9190raleqdv 2921 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. f  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  f ) )
92 breq2 4293 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
k MonoAP  f  <->  k MonoAP  g )
)
9392cbvralv 2945 . . . . . . . . . . 11  |-  ( A. f  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  f  <->  A. g  e.  ( s  ^m  ( 1 ... m ) ) k MonoAP 
g )
9491, 93syl6bb 261 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) k MonoAP  f  <->  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g ) )
9594cbvrexv 2946 . . . . . . . . 9  |-  ( E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) k MonoAP  f  <->  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)
9688, 95syl6bb 261 . . . . . . . 8  |-  ( r  =  s  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) k MonoAP 
f  <->  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m ) ) k MonoAP 
g ) )
9796cbvralv 2945 . . . . . . 7  |-  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f  <->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
98 simplr 749 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  r  e.  Fin )
99 simpll 748 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  k  e.  ( ZZ>= `  2 )
)
100 simpr 458 . . . . . . . . . . 11  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
10195ralbii 2737 . . . . . . . . . . 11  |-  ( A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f  <->  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g )
102100, 101sylibr 212 . . . . . . . . . 10  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
1 ... n ) ) k MonoAP  f )
10398, 99, 102vdwlem11 14048 . . . . . . . . 9  |-  ( ( ( k  e.  (
ZZ>= `  2 )  /\  r  e.  Fin )  /\  A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g
)  ->  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f )
104103ex 434 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  r  e.  Fin )  ->  ( A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  ( 1 ... m
) ) k MonoAP  g  ->  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) ( k  +  1 ) MonoAP 
f ) )
105104ralrimdva 2804 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( A. s  e.  Fin  E. m  e.  NN  A. g  e.  ( s  ^m  (
1 ... m ) ) k MonoAP  g  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
10697, 105syl5bi 217 . . . . . 6  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) k MonoAP  f  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) ( k  +  1 ) MonoAP  f ) )
10755, 58, 61, 64, 85, 106uzind4 10908 . . . . 5  |-  ( K  e.  ( ZZ>= `  2
)  ->  A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  (
1 ... n ) ) K MonoAP  f )
108 oveq1 6097 . . . . . . . 8  |-  ( r  =  R  ->  (
r  ^m  ( 1 ... n ) )  =  ( R  ^m  ( 1 ... n
) ) )
109108raleqdv 2921 . . . . . . 7  |-  ( r  =  R  ->  ( A. f  e.  (
r  ^m  ( 1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
110109rexbidv 2734 . . . . . 6  |-  ( r  =  R  ->  ( E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
111110rspcv 3066 . . . . 5  |-  ( R  e.  Fin  ->  ( A. r  e.  Fin  E. n  e.  NN  A. f  e.  ( r  ^m  ( 1 ... n
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
1122, 107, 111syl2im 38 . . . 4  |-  ( ph  ->  ( K  e.  (
ZZ>= `  2 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
11352, 112jaod 380 . . 3  |-  ( ph  ->  ( ( K  =  1  \/  K  e.  ( ZZ>= `  2 )
)  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
1141, 113syl5bi 217 . 2  |-  ( ph  ->  ( K  e.  NN  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
115 fveq2 5688 . . . . . . 7  |-  ( K  =  0  ->  (AP `  K )  =  (AP
`  0 ) )
116115oveqd 6107 . . . . . 6  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  =  ( 1 (AP ` 
0 ) 1 ) )
117 vdwap0 14033 . . . . . . 7  |-  ( ( 1  e.  NN  /\  1  e.  NN )  ->  ( 1 (AP ` 
0 ) 1 )  =  (/) )
1187, 7, 117mp2an 667 . . . . . 6  |-  ( 1 (AP `  0 ) 1 )  =  (/)
119116, 118syl6eq 2489 . . . . 5  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  =  (/) )
120 0ss 3663 . . . . 5  |-  (/)  C_  ( `' f " {
( f `  1
) } )
121119, 120syl6eqss 3403 . . . 4  |-  ( K  =  0  ->  (
1 (AP `  K
) 1 )  C_  ( `' f " {
( f `  1
) } ) )
122121ralrimivw 2798 . . 3  |-  ( K  =  0  ->  A. f  e.  ( R  ^m  (
1 ... 1 ) ) ( 1 (AP `  K ) 1 ) 
C_  ( `' f
" { ( f `
 1 ) } ) )
123122, 51syl5 32 . 2  |-  ( ph  ->  ( K  =  0  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
124 elnn0 10577 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
12541, 124sylib 196 . 2  |-  ( ph  ->  ( K  e.  NN  \/  K  =  0
) )
126114, 123, 125mpjaod 381 1  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   A.wral 2713   E.wrex 2714   _Vcvv 2970    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289   `'ccnv 4835   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   Fincfn 7306   0cc0 9278   1c1 9279    + caddc 9281   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433   #chash 12099  APcvdwa 14022   MonoAP cvdwm 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-hash 12100  df-vdwap 14025  df-vdwmc 14026  df-vdwpc 14027
This theorem is referenced by:  vdw  14051
  Copyright terms: Public domain W3C validator