MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Unicode version

Theorem vdwlem11 14368
Description: Lemma for vdw 14371. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r  |-  ( ph  ->  R  e.  Fin )
vdwlem9.k  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
vdwlem9.s  |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f
)
Assertion
Ref Expression
vdwlem11  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) ( K  +  1 ) MonoAP 
f )
Distinct variable groups:    ph, n, f   
f, s, K, n    R, f, n, s    ph, f
Allowed substitution hint:    ph( s)

Proof of Theorem vdwlem11
Dummy variables  a 
d  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3  |-  ( ph  ->  R  e.  Fin )
2 vdwlem9.k . . 3  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
3 vdwlem9.s . . 3  |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f
)
4 hashcl 12396 . . . . 5  |-  ( R  e.  Fin  ->  ( # `
 R )  e. 
NN0 )
51, 4syl 16 . . . 4  |-  ( ph  ->  ( # `  R
)  e.  NN0 )
6 nn0p1nn 10835 . . . 4  |-  ( (
# `  R )  e.  NN0  ->  ( ( # `
 R )  +  1 )  e.  NN )
75, 6syl 16 . . 3  |-  ( ph  ->  ( ( # `  R
)  +  1 )  e.  NN )
81, 2, 3, 7vdwlem10 14367 . 2  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) )
91adantr 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  R  e. 
Fin )
10 ovex 6309 . . . . . . 7  |-  ( 1 ... n )  e. 
_V
11 elmapg 7433 . . . . . . 7  |-  ( ( R  e.  Fin  /\  ( 1 ... n
)  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... n ) )  <-> 
f : ( 1 ... n ) --> R ) )
129, 10, 11sylancl 662 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( f  e.  ( R  ^m  ( 1 ... n
) )  <->  f :
( 1 ... n
) --> R ) )
1312biimpa 484 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  f :
( 1 ... n
) --> R )
145nn0red 10853 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  R
)  e.  RR )
1514ltp1d 10476 . . . . . . . . . 10  |-  ( ph  ->  ( # `  R
)  <  ( ( # `
 R )  +  1 ) )
16 peano2re 9752 . . . . . . . . . . . 12  |-  ( (
# `  R )  e.  RR  ->  ( ( # `
 R )  +  1 )  e.  RR )
1714, 16syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  R
)  +  1 )  e.  RR )
1814, 17ltnled 9731 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  R
)  <  ( ( # `
 R )  +  1 )  <->  -.  (
( # `  R )  +  1 )  <_ 
( # `  R ) ) )
1915, 18mpbid 210 . . . . . . . . 9  |-  ( ph  ->  -.  ( ( # `  R )  +  1 )  <_  ( # `  R
) )
2019adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  -.  ( ( # `
 R )  +  1 )  <_  ( # `
 R ) )
21 eluz2b2 11154 . . . . . . . . . . . . . 14  |-  ( K  e.  ( ZZ>= `  2
)  <->  ( K  e.  NN  /\  1  < 
K ) )
2221simplbi 460 . . . . . . . . . . . . 13  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  NN )
232, 22syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  NN )
2423adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  K  e.  NN )
2524nnnn0d 10852 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  K  e.  NN0 )
26 simprr 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  f : ( 1 ... n ) --> R )
277adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  ( ( # `  R )  +  1 )  e.  NN )
28 eqid 2467 . . . . . . . . . 10  |-  ( 1 ... ( ( # `  R )  +  1 ) )  =  ( 1 ... ( (
# `  R )  +  1 ) )
2910, 25, 26, 27, 28vdwpc 14357 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  ( <. (
( # `  R )  +  1 ) ,  K >. PolyAP  f  <->  E. a  e.  NN  E. d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ( A. i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  =  ( ( # `  R
)  +  1 ) ) ) )
301ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  R  e.  Fin )
3126ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
f : ( 1 ... n ) --> R )
32 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  (
( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )
33 cnvimass 5357 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' f " { ( f `  ( a  +  ( d `  i ) ) ) } )  C_  dom  f
3432, 33syl6ss 3516 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  (
( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) )  C_  dom  f )
3526ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  f : ( 1 ... n ) --> R )
36 fdm 5735 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : ( 1 ... n ) --> R  ->  dom  f  =  (
1 ... n ) )
3735, 36syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  dom  f  =  ( 1 ... n ) )
3834, 37sseqtrd 3540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  (
( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) )  C_  ( 1 ... n
) )
3923ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  ->  K  e.  NN )
40 simplrl 759 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
a  e.  NN )
41 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  ( a  e.  NN  /\  d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ) )  ->  d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) )
42 nnex 10542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  NN  e.  _V
43 ovex 6309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 1 ... ( ( # `  R )  +  1 ) )  e.  _V
4442, 43elmap 7447 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) )  <->  d : ( 1 ... ( (
# `  R )  +  1 ) ) --> NN )
4541, 44sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  ( a  e.  NN  /\  d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ) )  ->  d :
( 1 ... (
( # `  R )  +  1 ) ) --> NN )
4645ffvelrnda 6021 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
( d `  i
)  e.  NN )
4740, 46nnaddcld 10582 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
( a  +  ( d `  i ) )  e.  NN )
48 vdwapid1 14352 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN  /\  ( a  +  ( d `  i ) )  e.  NN  /\  ( d `  i
)  e.  NN )  ->  ( a  +  ( d `  i
) )  e.  ( ( a  +  ( d `  i ) ) (AP `  K
) ( d `  i ) ) )
4939, 47, 46, 48syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
( a  +  ( d `  i ) )  e.  ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) ) )
5049adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  (
a  +  ( d `
 i ) )  e.  ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) ) )
5138, 50sseldd 3505 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  /\  ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } ) )  ->  (
a  +  ( d `
 i ) )  e.  ( 1 ... n ) )
5251ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
( ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' f " { ( f `
 ( a  +  ( d `  i
) ) ) } )  ->  ( a  +  ( d `  i ) )  e.  ( 1 ... n
) ) )
53 ffvelrn 6019 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... n ) --> R  /\  ( a  +  ( d `  i
) )  e.  ( 1 ... n ) )  ->  ( f `  ( a  +  ( d `  i ) ) )  e.  R
)
5431, 52, 53syl6an 545 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) )  -> 
( ( ( a  +  ( d `  i ) ) (AP
`  K ) ( d `  i ) )  C_  ( `' f " { ( f `
 ( a  +  ( d `  i
) ) ) } )  ->  ( f `  ( a  +  ( d `  i ) ) )  e.  R
) )
5554ralimdva 2872 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  ( a  e.  NN  /\  d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ) )  ->  ( A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } )  ->  A. i  e.  (
1 ... ( ( # `  R )  +  1 ) ) ( f `
 ( a  +  ( d `  i
) ) )  e.  R ) )
5655imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  A. i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) ( f `  (
a  +  ( d `
 i ) ) )  e.  R )
57 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... ( ( # `  R
)  +  1 ) )  |->  ( f `  ( a  +  ( d `  i ) ) ) )  =  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )
5857fmpt 6042 . . . . . . . . . . . . . . . 16  |-  ( A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( f `
 ( a  +  ( d `  i
) ) )  e.  R  <->  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) : ( 1 ... ( (
# `  R )  +  1 ) ) --> R )
5956, 58sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) : ( 1 ... ( (
# `  R )  +  1 ) ) --> R )
60 frn 5737 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 1 ... ( ( # `  R )  +  1 ) )  |->  ( f `
 ( a  +  ( d `  i
) ) ) ) : ( 1 ... ( ( # `  R
)  +  1 ) ) --> R  ->  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  C_  R
)
6159, 60syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  C_  R
)
62 ssdomg 7561 . . . . . . . . . . . . . 14  |-  ( R  e.  Fin  ->  ( ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  C_  R  ->  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  ~<_  R ) )
6330, 61, 62sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  ~<_  R )
64 ssfi 7740 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Fin  /\  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  C_  R
)  ->  ran  ( i  e.  ( 1 ... ( ( # `  R
)  +  1 ) )  |->  ( f `  ( a  +  ( d `  i ) ) ) )  e. 
Fin )
6530, 61, 64syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  e.  Fin )
66 hashdom 12415 . . . . . . . . . . . . . 14  |-  ( ( ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  e.  Fin  /\  R  e.  Fin )  ->  ( ( # `  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  <_ 
( # `  R )  <->  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  ~<_  R ) )
6765, 30, 66syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ( ( # `  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  <_ 
( # `  R )  <->  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) )  ~<_  R ) )
6863, 67mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ( # `  ran  ( i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  <_ 
( # `  R ) )
69 breq1 4450 . . . . . . . . . . . 12  |-  ( (
# `  ran  ( i  e.  ( 1 ... ( ( # `  R
)  +  1 ) )  |->  ( f `  ( a  +  ( d `  i ) ) ) ) )  =  ( ( # `  R )  +  1 )  ->  ( ( # `
 ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  <_ 
( # `  R )  <-> 
( ( # `  R
)  +  1 )  <_  ( # `  R
) ) )
7068, 69syl5ibcom 220 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  (
a  e.  NN  /\  d  e.  ( NN  ^m  ( 1 ... (
( # `  R )  +  1 ) ) ) ) )  /\  A. i  e.  ( 1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } ) )  ->  ( ( # `  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  =  ( ( # `  R
)  +  1 )  ->  ( ( # `  R )  +  1 )  <_  ( # `  R
) ) )
7170expimpd 603 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  f : ( 1 ... n ) --> R ) )  /\  ( a  e.  NN  /\  d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ) )  ->  ( ( A. i  e.  (
1 ... ( ( # `  R )  +  1 ) ) ( ( a  +  ( d `
 i ) ) (AP `  K ) ( d `  i
) )  C_  ( `' f " {
( f `  (
a  +  ( d `
 i ) ) ) } )  /\  ( # `  ran  (
i  e.  ( 1 ... ( ( # `  R )  +  1 ) )  |->  ( f `
 ( a  +  ( d `  i
) ) ) ) )  =  ( (
# `  R )  +  1 ) )  ->  ( ( # `  R )  +  1 )  <_  ( # `  R
) ) )
7271rexlimdvva 2962 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  ( E. a  e.  NN  E. d  e.  ( NN  ^m  (
1 ... ( ( # `  R )  +  1 ) ) ) ( A. i  e.  ( 1 ... ( (
# `  R )  +  1 ) ) ( ( a  +  ( d `  i
) ) (AP `  K ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... (
( # `  R )  +  1 ) ) 
|->  ( f `  (
a  +  ( d `
 i ) ) ) ) )  =  ( ( # `  R
)  +  1 ) )  ->  ( ( # `
 R )  +  1 )  <_  ( # `
 R ) ) )
7329, 72sylbid 215 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  ( <. (
( # `  R )  +  1 ) ,  K >. PolyAP  f  ->  (
( # `  R )  +  1 )  <_ 
( # `  R ) ) )
7420, 73mtod 177 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  -.  <. ( (
# `  R )  +  1 ) ,  K >. PolyAP  f )
75 biorf 405 . . . . . . 7  |-  ( -. 
<. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  -> 
( ( K  + 
1 ) MonoAP  f  <->  ( <. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) ) )
7674, 75syl 16 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  f : ( 1 ... n
) --> R ) )  ->  ( ( K  +  1 ) MonoAP  f  <->  (
<. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) ) )
7776anassrs 648 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  f : ( 1 ... n ) --> R )  ->  ( ( K  +  1 ) MonoAP  f  <->  (
<. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) ) )
7813, 77syldan 470 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  ( ( K  +  1 ) MonoAP 
f  <->  ( <. (
( # `  R )  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) ) )
7978ralbidva 2900 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. f  e.  ( R  ^m  ( 1 ... n
) ) ( K  +  1 ) MonoAP  f  <->  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( ( # `  R
)  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) ) )
8079rexbidva 2970 . 2  |-  ( ph  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( K  +  1 ) MonoAP  f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( ( # `  R )  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
818, 80mpbird 232 1  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) ( K  +  1 ) MonoAP 
f )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   {csn 4027   <.cop 4033   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   -->wf 5584   ` cfv 5588  (class class class)co 6284    ^m cmap 7420    ~<_ cdom 7514   Fincfn 7516   RRcr 9491   1c1 9493    + caddc 9495    < clt 9628    <_ cle 9629   NNcn 10536   2c2 10585   NN0cn0 10795   ZZ>=cuz 11082   ...cfz 11672   #chash 12373  APcvdwa 14342   MonoAP cvdwm 14343   PolyAP cvdwp 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-hash 12374  df-vdwap 14345  df-vdwmc 14346  df-vdwpc 14347
This theorem is referenced by:  vdwlem13  14370
  Copyright terms: Public domain W3C validator