Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Unicode version

Theorem vd01 33569
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1  |-  ph
Assertion
Ref Expression
vd01  |-  (. ps  ->.  ph ).

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3  |-  ph
21a1i 11 . 2  |-  ( ps 
->  ph )
32dfvd1ir 33536 1  |-  (. ps  ->.  ph ).
Colors of variables: wff setvar class
Syntax hints:   (.wvd1 33532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-vd1 33533
This theorem is referenced by:  e210  33631  e201  33633  e021  33637  e012  33639  e102  33641  e110  33648  e101  33650  e011  33652  e100  33654  e010  33656  e001  33658  e01  33663  e10  33666  sspwimpVD  33905
  Copyright terms: Public domain W3C validator