MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Unicode version

Theorem uzwo3 10944
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 10915 allows the lower bound  B to be any real number. See also nnwo 10916 and nnwos 10918. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
uzwo3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem uzwo3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 renegcl 9668 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
21adantr 462 . . 3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  -u B  e.  RR )
3 arch 10572 . . 3  |-  ( -u B  e.  RR  ->  E. n  e.  NN  -u B  <  n )
42, 3syl 16 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E. n  e.  NN  -u B  <  n )
5 simplrl 754 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  { z  e.  ZZ  |  B  <_  z } )
6 simplrl 754 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  NN )
7 nnnegz 10645 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
86, 7syl 16 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  ZZ )
98zred 10743 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  RR )
10 simprl 750 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ZZ )
1110zred 10743 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  RR )
12 simpll 748 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  e.  RR )
136nnred 10333 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  RR )
14 simplrr 755 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u B  <  n )
1512, 13, 14ltnegcon1d 9915 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  B )
16 simprr 751 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  <_  z )
179, 12, 11, 15, 16ltletrd 9527 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  z )
189, 11, 17ltled 9518 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <_  z )
19 eluz 10870 . . . . . . . . . . 11  |-  ( (
-u n  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  e.  ( ZZ>= `  -u n )  <->  -u n  <_  z ) )
208, 10, 19syl2anc 656 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
( z  e.  (
ZZ>= `  -u n )  <->  -u n  <_ 
z ) )
2118, 20mpbird 232 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ( ZZ>= `  -u n ) )
2221expr 612 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  z  e.  ZZ )  ->  ( B  <_  z  ->  z  e.  ( ZZ>= `  -u n ) ) )
2322ralrimiva 2797 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. z  e.  ZZ  ( B  <_ 
z  ->  z  e.  ( ZZ>= `  -u n ) ) )
24 rabss 3426 . . . . . . 7  |-  ( { z  e.  ZZ  |  B  <_  z }  C_  ( ZZ>= `  -u n )  <->  A. z  e.  ZZ  ( B  <_  z  -> 
z  e.  ( ZZ>= `  -u n ) ) )
2523, 24sylibr 212 . . . . . 6  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
2625adantlr 709 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
275, 26sstrd 3363 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  ( ZZ>=
`  -u n ) )
28 simplrr 755 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  =/=  (/) )
29 infmssuzcl 10934 . . . 4  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  A  =/=  (/) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
3027, 28, 29syl2anc 656 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
31 infmssuzle 10933 . . . . 5  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3227, 31sylan 468 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3332ralrimiva 2797 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y
)
3430adantr 462 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A )
35 simprr 751 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A. y  e.  A  x  <_  y )
36 breq2 4293 . . . . . . . 8  |-  ( y  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3736rspcv 3066 . . . . . . 7  |-  ( sup ( A ,  RR ,  `'  <  )  e.  A  ->  ( A. y  e.  A  x  <_  y  ->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3834, 35, 37sylc 60 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  <_  sup ( A ,  RR ,  `'  <  ) )
3927adantr 462 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  ( ZZ>= `  -u n
) )
40 simprl 750 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  A )
41 infmssuzle 10933 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  x  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  x
)
4239, 40, 41syl2anc 656 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  <_  x )
43 uzssz 10876 . . . . . . . . . . 11  |-  ( ZZ>= `  -u n )  C_  ZZ
44 zssre 10649 . . . . . . . . . . 11  |-  ZZ  C_  RR
4543, 44sstri 3362 . . . . . . . . . 10  |-  ( ZZ>= `  -u n )  C_  RR
4627, 45syl6ss 3365 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  RR )
4746adantr 462 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  RR )
4847, 40sseldd 3354 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  RR )
4946, 30sseldd 3354 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5049adantr 462 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5148, 50letri3d 9512 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> 
( x  =  sup ( A ,  RR ,  `'  <  )  <->  ( x  <_  sup ( A ,  RR ,  `'  <  )  /\  sup ( A ,  RR ,  `'  <  )  <_  x )
) )
5238, 42, 51mpbir2and 908 . . . . 5  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  =  sup ( A ,  RR ,  `'  <  ) )
5352expr 612 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  x  e.  A )  ->  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
5453ralrimiva 2797 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
55 breq1 4292 . . . . 5  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  sup ( A ,  RR ,  `'  <  )  <_  y ) )
5655ralbidv 2733 . . . 4  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_ 
y ) )
5756eqreu 3148 . . 3  |-  ( ( sup ( A ,  RR ,  `'  <  )  e.  A  /\  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y  /\  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
5830, 33, 54, 57syl3anc 1213 . 2  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
594, 58rexlimddv 2843 1  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   E!wreu 2715   {crab 2717    C_ wss 3325   (/)c0 3634   class class class wbr 4289   `'ccnv 4835   ` cfv 5415   supcsup 7686   RRcr 9277    < clt 9414    <_ cle 9415   -ucneg 9592   NNcn 10318   ZZcz 10642   ZZ>=cuz 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858
This theorem is referenced by:  zmin  10945
  Copyright terms: Public domain W3C validator