MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   Unicode version

Theorem uzwo3 11266
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 11230 allows the lower bound  B to be any real number. See also nnwo 11231 and nnwos 11233. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem uzwo3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 renegcl 9942 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
21adantr 467 . . 3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  -u B  e.  RR )
3 arch 10873 . . 3  |-  ( -u B  e.  RR  ->  E. n  e.  NN  -u B  <  n )
42, 3syl 17 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E. n  e.  NN  -u B  <  n )
5 simplrl 771 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  { z  e.  ZZ  |  B  <_  z } )
6 simplrl 771 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  NN )
7 nnnegz 10947 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
86, 7syl 17 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  ZZ )
98zred 11047 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  RR )
10 simprl 765 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ZZ )
1110zred 11047 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  RR )
12 simpll 761 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  e.  RR )
136nnred 10631 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  RR )
14 simplrr 772 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u B  <  n )
1512, 13, 14ltnegcon1d 10200 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  B )
16 simprr 767 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  <_  z )
179, 12, 11, 15, 16ltletrd 9800 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  z )
189, 11, 17ltled 9788 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <_  z )
19 eluz 11179 . . . . . . . . . . 11  |-  ( (
-u n  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  e.  ( ZZ>= `  -u n )  <->  -u n  <_  z ) )
208, 10, 19syl2anc 667 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
( z  e.  (
ZZ>= `  -u n )  <->  -u n  <_ 
z ) )
2118, 20mpbird 236 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ( ZZ>= `  -u n ) )
2221expr 620 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  z  e.  ZZ )  ->  ( B  <_  z  ->  z  e.  ( ZZ>= `  -u n ) ) )
2322ralrimiva 2804 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. z  e.  ZZ  ( B  <_ 
z  ->  z  e.  ( ZZ>= `  -u n ) ) )
24 rabss 3508 . . . . . . 7  |-  ( { z  e.  ZZ  |  B  <_  z }  C_  ( ZZ>= `  -u n )  <->  A. z  e.  ZZ  ( B  <_  z  -> 
z  e.  ( ZZ>= `  -u n ) ) )
2523, 24sylibr 216 . . . . . 6  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
2625adantlr 722 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
275, 26sstrd 3444 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  ( ZZ>=
`  -u n ) )
28 simplrr 772 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  =/=  (/) )
29 infssuzcl 11252 . . . 4  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  A  =/=  (/) )  -> inf ( A ,  RR ,  <  )  e.  A )
3027, 28, 29syl2anc 667 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  -> inf ( A ,  RR ,  <  )  e.  A )
31 infssuzle 11251 . . . . 5  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  y  e.  A )  -> inf ( A ,  RR ,  <  )  <_  y )
3227, 31sylan 474 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  y  e.  A )  -> inf ( A ,  RR ,  <  )  <_  y )
3332ralrimiva 2804 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y )
3430adantr 467 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> inf ( A ,  RR ,  <  )  e.  A )
35 simprr 767 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A. y  e.  A  x  <_  y )
36 breq2 4409 . . . . . . . 8  |-  ( y  = inf ( A ,  RR ,  <  )  -> 
( x  <_  y  <->  x  <_ inf ( A ,  RR ,  <  ) ) )
3736rspcv 3148 . . . . . . 7  |-  (inf ( A ,  RR ,  <  )  e.  A  -> 
( A. y  e.  A  x  <_  y  ->  x  <_ inf ( A ,  RR ,  <  )
) )
3834, 35, 37sylc 62 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  <_ inf ( A ,  RR ,  <  ) )
3927adantr 467 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  ( ZZ>= `  -u n
) )
40 simprl 765 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  A )
41 infssuzle 11251 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  x  e.  A )  -> inf ( A ,  RR ,  <  )  <_  x )
4239, 40, 41syl2anc 667 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> inf ( A ,  RR ,  <  )  <_  x )
43 uzssz 11185 . . . . . . . . . . 11  |-  ( ZZ>= `  -u n )  C_  ZZ
44 zssre 10951 . . . . . . . . . . 11  |-  ZZ  C_  RR
4543, 44sstri 3443 . . . . . . . . . 10  |-  ( ZZ>= `  -u n )  C_  RR
4627, 45syl6ss 3446 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  RR )
4746adantr 467 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  RR )
4847, 40sseldd 3435 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  RR )
4946, 30sseldd 3435 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  -> inf ( A ,  RR ,  <  )  e.  RR )
5049adantr 467 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> inf ( A ,  RR ,  <  )  e.  RR )
5148, 50letri3d 9782 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> 
( x  = inf ( A ,  RR ,  <  )  <->  ( x  <_ inf ( A ,  RR ,  <  )  /\ inf ( A ,  RR ,  <  )  <_  x ) ) )
5238, 42, 51mpbir2and 934 . . . . 5  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  = inf ( A ,  RR ,  <  )
)
5352expr 620 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  x  e.  A )  ->  ( A. y  e.  A  x  <_  y  ->  x  = inf ( A ,  RR ,  <  ) ) )
5453ralrimiva 2804 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  = inf ( A ,  RR ,  <  ) ) )
55 breq1 4408 . . . . 5  |-  ( x  = inf ( A ,  RR ,  <  )  -> 
( x  <_  y  <-> inf ( A ,  RR ,  <  )  <_  y )
)
5655ralbidv 2829 . . . 4  |-  ( x  = inf ( A ,  RR ,  <  )  -> 
( A. y  e.  A  x  <_  y  <->  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y )
)
5756eqreu 3232 . . 3  |-  ( (inf ( A ,  RR ,  <  )  e.  A  /\  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y  /\  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  = inf ( A ,  RR ,  <  ) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y
)
5830, 33, 54, 57syl3anc 1269 . 2  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
594, 58rexlimddv 2885 1  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   E.wrex 2740   E!wreu 2741   {crab 2743    C_ wss 3406   (/)c0 3733   class class class wbr 4405   ` cfv 5585  infcinf 7960   RRcr 9543    < clt 9680    <_ cle 9681   -ucneg 9866   NNcn 10616   ZZcz 10944   ZZ>=cuz 11166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-sup 7961  df-inf 7962  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167
This theorem is referenced by:  zmin  11267
  Copyright terms: Public domain W3C validator