MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Unicode version

Theorem uzwo3 10525
Description: Well-ordering principle: any non-empty subset of upper integers has a unique least element. This generalization of uzwo2 10497 allows the lower bound  B to be any real number. See also nnwo 10498 and nnwos 10500. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
uzwo3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem uzwo3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 renegcl 9320 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
21adantr 452 . . 3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  -u B  e.  RR )
3 arch 10174 . . 3  |-  ( -u B  e.  RR  ->  E. n  e.  NN  -u B  <  n )
42, 3syl 16 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E. n  e.  NN  -u B  <  n )
5 simplrl 737 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  { z  e.  ZZ  |  B  <_  z } )
6 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  NN )
7 nnnegz 10241 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
86, 7syl 16 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  ZZ )
98zred 10331 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  RR )
10 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ZZ )
1110zred 10331 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  RR )
12 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  e.  RR )
136nnred 9971 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  RR )
14 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u B  <  n )
1512, 13, 14ltnegcon1d 9562 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  B )
16 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  <_  z )
179, 12, 11, 15, 16ltletrd 9186 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  z )
189, 11, 17ltled 9177 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <_  z )
19 eluz 10455 . . . . . . . . . . 11  |-  ( (
-u n  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  e.  ( ZZ>= `  -u n )  <->  -u n  <_  z ) )
208, 10, 19syl2anc 643 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
( z  e.  (
ZZ>= `  -u n )  <->  -u n  <_ 
z ) )
2118, 20mpbird 224 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ( ZZ>= `  -u n ) )
2221expr 599 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  z  e.  ZZ )  ->  ( B  <_  z  ->  z  e.  ( ZZ>= `  -u n ) ) )
2322ralrimiva 2749 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. z  e.  ZZ  ( B  <_ 
z  ->  z  e.  ( ZZ>= `  -u n ) ) )
24 rabss 3380 . . . . . . 7  |-  ( { z  e.  ZZ  |  B  <_  z }  C_  ( ZZ>= `  -u n )  <->  A. z  e.  ZZ  ( B  <_  z  -> 
z  e.  ( ZZ>= `  -u n ) ) )
2523, 24sylibr 204 . . . . . 6  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
2625adantlr 696 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
275, 26sstrd 3318 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  ( ZZ>=
`  -u n ) )
28 simplrr 738 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  =/=  (/) )
29 infmssuzcl 10515 . . . 4  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  A  =/=  (/) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
3027, 28, 29syl2anc 643 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
31 infmssuzle 10514 . . . . 5  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3227, 31sylan 458 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3332ralrimiva 2749 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y
)
3430adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A )
35 simprr 734 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A. y  e.  A  x  <_  y )
36 breq2 4176 . . . . . . . 8  |-  ( y  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3736rspcv 3008 . . . . . . 7  |-  ( sup ( A ,  RR ,  `'  <  )  e.  A  ->  ( A. y  e.  A  x  <_  y  ->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3834, 35, 37sylc 58 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  <_  sup ( A ,  RR ,  `'  <  ) )
3927adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  ( ZZ>= `  -u n
) )
40 simprl 733 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  A )
41 infmssuzle 10514 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  x  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  x
)
4239, 40, 41syl2anc 643 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  <_  x )
43 uzssz 10461 . . . . . . . . . . 11  |-  ( ZZ>= `  -u n )  C_  ZZ
44 zssre 10245 . . . . . . . . . . 11  |-  ZZ  C_  RR
4543, 44sstri 3317 . . . . . . . . . 10  |-  ( ZZ>= `  -u n )  C_  RR
4627, 45syl6ss 3320 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  RR )
4746adantr 452 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  RR )
4847, 40sseldd 3309 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  RR )
4946, 30sseldd 3309 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5049adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5148, 50letri3d 9171 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> 
( x  =  sup ( A ,  RR ,  `'  <  )  <->  ( x  <_  sup ( A ,  RR ,  `'  <  )  /\  sup ( A ,  RR ,  `'  <  )  <_  x )
) )
5238, 42, 51mpbir2and 889 . . . . 5  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  =  sup ( A ,  RR ,  `'  <  ) )
5352expr 599 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  x  e.  A )  ->  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
5453ralrimiva 2749 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
55 breq1 4175 . . . . 5  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  sup ( A ,  RR ,  `'  <  )  <_  y ) )
5655ralbidv 2686 . . . 4  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_ 
y ) )
5756eqreu 3086 . . 3  |-  ( ( sup ( A ,  RR ,  `'  <  )  e.  A  /\  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y  /\  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
5830, 33, 54, 57syl3anc 1184 . 2  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
594, 58rexlimddv 2794 1  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   E!wreu 2668   {crab 2670    C_ wss 3280   (/)c0 3588   class class class wbr 4172   `'ccnv 4836   ` cfv 5413   supcsup 7403   RRcr 8945    < clt 9076    <_ cle 9077   -ucneg 9248   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444
This theorem is referenced by:  zmin  10526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445
  Copyright terms: Public domain W3C validator