MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztrn Structured version   Visualization version   Unicode version

Theorem uztrn 11175
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 11164 . . 3  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 468 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
3 eluzelz 11168 . . 3  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
43adantr 467 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
5 eluzle 11171 . . . 4  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
65adantl 468 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  K )
7 eluzle 11171 . . . 4  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
87adantr 467 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  <_  M )
9 eluzelz 11168 . . . . 5  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
109adantl 468 . . . 4  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
11 zletr 10981 . . . 4  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  K  /\  K  <_  M )  ->  N  <_  M
) )
122, 10, 4, 11syl3anc 1268 . . 3  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  <_  K  /\  K  <_  M )  ->  N  <_  M ) )
136, 8, 12mp2and 685 . 2  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <_  M )
14 eluz2 11165 . 2  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
152, 4, 13, 14syl3anbrc 1192 1  |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ( ZZ>= `  N )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    e. wcel 1887   class class class wbr 4402   ` cfv 5582    <_ cle 9676   ZZcz 10937   ZZ>=cuz 11159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-pre-lttri 9613  ax-pre-lttrn 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-neg 9863  df-z 10938  df-uz 11160
This theorem is referenced by:  uztrn2  11176  fzsplit2  11824  fzass4  11836  fzss1  11837  fzss2  11838  uzsplit  11866  seqfveq2  12235  sermono  12245  seqsplit  12246  seqid2  12259  fzsdom2  12600  seqcoll  12627  spllen  12861  splfv2a  12863  splval2  12864  climcndslem1  13907  mertenslem1  13940  ntrivcvgfvn0  13955  zprod  13991  dvdsfac  14360  smupvallem  14457  vdwlem2  14932  vdwlem6  14936  efgredleme  17393  bposlem6  24217  dchrisumlem2  24328  axlowdimlem16  24987  fzsplit3  28370  sseqf  29225  ballotlemsima  29348  ballotlemfrc  29359  ballotlemsimaOLD  29386  ballotlemfrcOLD  29397  climuzcnv  30315  seqpo  32076  incsequz2  32078  mettrifi  32086  monotuz  35789
  Copyright terms: Public domain W3C validator