MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsup Structured version   Unicode version

Theorem uzsup 11820
Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
uzsup.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
uzsup  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  = +oo )

Proof of Theorem uzsup
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  M  e.  ZZ )
2 flcl 11763 . . . . . . . 8  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  ZZ )
32peano2zd 10862 . . . . . . 7  |-  ( x  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  ZZ )
4 id 22 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ZZ )
5 ifcl 3940 . . . . . . 7  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  ZZ )
63, 4, 5syl2anr 478 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  ZZ )
7 zre 10762 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
8 reflcl 11764 . . . . . . . 8  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
9 peano2re 9654 . . . . . . . 8  |-  ( ( |_ `  x )  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  RR )
108, 9syl 16 . . . . . . 7  |-  ( x  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  RR )
11 max1 11269 . . . . . . 7  |-  ( ( M  e.  RR  /\  ( ( |_ `  x )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M ) )
127, 10, 11syl2an 477 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_
`  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M ) )
13 eluz2 10979 . . . . . 6  |-  ( if ( M  <_  (
( |_ `  x
)  +  1 ) ,  ( ( |_
`  x )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  x
)  +  1 ) ,  ( ( |_
`  x )  +  1 ) ,  M
) ) )
141, 6, 12, 13syl3anbrc 1172 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  (
ZZ>= `  M ) )
15 uzsup.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
1614, 15syl6eleqr 2553 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  Z
)
17 simpr 461 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  x  e.  RR )
1810adantl 466 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  ( ( |_ `  x )  +  1 )  e.  RR )
196zred 10859 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  RR )
20 fllep1 11769 . . . . . 6  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
2120adantl 466 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  x  <_  ( ( |_ `  x )  +  1 ) )
22 max2 11271 . . . . . 6  |-  ( ( M  e.  RR  /\  ( ( |_ `  x )  +  1 )  e.  RR )  ->  ( ( |_
`  x )  +  1 )  <_  if ( M  <_  ( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M ) )
237, 10, 22syl2an 477 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  ( ( |_ `  x )  +  1 )  <_  if ( M  <_  ( ( |_
`  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M ) )
2417, 18, 19, 21, 23letrd 9640 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  x  <_  if ( M  <_  ( ( |_
`  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M ) )
25 breq2 4405 . . . . 5  |-  ( n  =  if ( M  <_  ( ( |_
`  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M )  -> 
( x  <_  n  <->  x  <_  if ( M  <_  ( ( |_
`  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M ) ) )
2625rspcev 3179 . . . 4  |-  ( ( if ( M  <_ 
( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x )  +  1 ) ,  M )  e.  Z  /\  x  <_  if ( M  <_  ( ( |_ `  x )  +  1 ) ,  ( ( |_ `  x
)  +  1 ) ,  M ) )  ->  E. n  e.  Z  x  <_  n )
2716, 24, 26syl2anc 661 . . 3  |-  ( ( M  e.  ZZ  /\  x  e.  RR )  ->  E. n  e.  Z  x  <_  n )
2827ralrimiva 2830 . 2  |-  ( M  e.  ZZ  ->  A. x  e.  RR  E. n  e.  Z  x  <_  n
)
29 uzssz 10992 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
3015, 29eqsstri 3495 . . . . 5  |-  Z  C_  ZZ
31 zssre 10765 . . . . 5  |-  ZZ  C_  RR
3230, 31sstri 3474 . . . 4  |-  Z  C_  RR
33 ressxr 9539 . . . 4  |-  RR  C_  RR*
3432, 33sstri 3474 . . 3  |-  Z  C_  RR*
35 supxrunb1 11394 . . 3  |-  ( Z 
C_  RR*  ->  ( A. x  e.  RR  E. n  e.  Z  x  <_  n  <->  sup ( Z ,  RR* ,  <  )  = +oo ) )
3634, 35ax-mp 5 . 2  |-  ( A. x  e.  RR  E. n  e.  Z  x  <_  n  <->  sup ( Z ,  RR* ,  <  )  = +oo )
3728, 36sylib 196 1  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  = +oo )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800    C_ wss 3437   ifcif 3900   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   supcsup 7802   RRcr 9393   1c1 9395    + caddc 9397   +oocpnf 9527   RR*cxr 9529    < clt 9530    <_ cle 9531   ZZcz 10758   ZZ>=cuz 10973   |_cfl 11758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974  df-fl 11760
This theorem is referenced by:  climrecl  13180  climge0  13181  caurcvg  13273  caucvg  13275  mbflimsup  21278
  Copyright terms: Public domain W3C validator