MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzss Structured version   Unicode version

Theorem uzss 11179
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )

Proof of Theorem uzss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzle 11171 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
21adantr 466 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  <_  N )
3 eluzel2 11164 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4 eluzelz 11168 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4jca 534 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
6 zletr 10981 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
763expa 1205 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( M  <_  N  /\  N  <_  k )  ->  M  <_  k ) )
85, 7sylan 473 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  N  /\  N  <_  k )  ->  M  <_  k
) )
92, 8mpand 679 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  M  <_  k ) )
109imdistanda 697 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ZZ  /\  N  <_  k )  -> 
( k  e.  ZZ  /\  M  <_  k )
) )
11 eluz1 11163 . . . 4  |-  ( N  e.  ZZ  ->  (
k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_ 
k ) ) )
124, 11syl 17 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  <->  ( k  e.  ZZ  /\  N  <_  k ) ) )
13 eluz1 11163 . . . 4  |-  ( M  e.  ZZ  ->  (
k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_ 
k ) ) )
143, 13syl 17 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ZZ  /\  M  <_  k ) ) )
1510, 12, 143imtr4d 271 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
1615ssrdv 3476 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1870    C_ wss 3442   class class class wbr 4426   ` cfv 5601    <_ cle 9675   ZZcz 10937   ZZ>=cuz 11159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-pre-lttri 9612  ax-pre-lttrn 9613
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-neg 9862  df-z 10938  df-uz 11160
This theorem is referenced by:  uzin  11191  uznnssnn  11206  fzopth  11833  4fvwrd4  11907  fzouzsplit  11951  seqfeq2  12233  rexuzre  13394  cau3lem  13396  climsup  13711  isumsplit  13876  isumrpcl  13879  cvgrat  13917  clim2prod  13922  fprodntriv  13974  isprm3  14604  pcfac  14807  lmflf  20951  caucfil  22146  uniioombllem4  22421  mbflimsup  22500  mbflimsupOLD  22501  ulmres  23208  ulmcaulem  23214  logfaclbnd  24013  axlowdimlem17  24834  poimirlem1  31644  poimirlem2  31645  poimirlem6  31649  poimirlem7  31650  poimirlem20  31663  climinf  37255  climinfOLD  37256  climsuse  37258  ioodvbdlimc1lem1  37374  ioodvbdlimc1lem2  37375  ioodvbdlimc2lem  37377  fzoopth  38411
  Copyright terms: Public domain W3C validator