MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzp1 Structured version   Unicode version

Theorem uzp1 11115
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
uzp1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )

Proof of Theorem uzp1
StepHypRef Expression
1 uzm1 11112 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
2 eluzp1p1 11107 . . . 4  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3 eluzelz 11091 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
43zcnd 10967 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
5 ax-1cn 9550 . . . . . 6  |-  1  e.  CC
6 npcan 9829 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
74, 5, 6sylancl 662 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  -  1 )  +  1 )  =  N )
87eleq1d 2536 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  <->  N  e.  ( ZZ>=
`  ( M  + 
1 ) ) ) )
92, 8syl5ib 219 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
109orim2d 838 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  =  M  \/  ( N  -  1
)  e.  ( ZZ>= `  M ) )  -> 
( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) ) )
111, 10mpd 15 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6284   CCcc 9490   1c1 9493    + caddc 9495    - cmin 9805   ZZ>=cuz 11082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083
This theorem is referenced by:  fzsuc2  11737  seqid  12120  seqz  12123  telfsumo  13579  fsumparts  13583  isumsplit  13615  prmlem0  14449  efgredlemc  16569  chtub  23243  incsequz2  29873  jm2.23  30570  fmul01lt1lem1  31162  wallispilem3  31395
  Copyright terms: Public domain W3C validator