MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uznn0sub Structured version   Unicode version

Theorem uznn0sub 10884
Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
uznn0sub  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )

Proof of Theorem uznn0sub
StepHypRef Expression
1 eluz2 10859 . 2  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2 znn0sub 10684 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( N  -  M )  e.  NN0 ) )
32biimp3a 1318 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  -  M )  e.  NN0 )
41, 3sylbi 195 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086    <_ cle 9411    - cmin 9587   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854
This theorem is referenced by:  fznn0sub  11479  fzen2  11783  fzfi  11786  leexp2a  11911  hashfz  12180  isercoll2  13138  iseralt  13154  cvgrat  13335  dvdsexp  13581  bitsshft  13663  prmm2nn0  13775  hashdvds  13842  prmdiv  13852  prmdiveq  13853  pcaddlem  13942  vdwlem5  14038  vdwlem8  14041  dvn2bss  21379  aaliou3lem2  21784  lgsquadlem1  22668  fiblem  26733  signstfveq0  26930  fprodser  27413  irrapxlem3  29118  itgsinexp  29748  wallispilem3  29815  numclwlk3lem3  30619  extwwlkfablem1  30620  extwwlkfablem2  30624  numclwwlkovf2ex  30632  extwwlkfab  30636  numclwlk1lem2foa  30637  numclwlk1lem2fo  30641  numclwwlk1  30644
  Copyright terms: Public domain W3C validator