MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4 Structured version   Unicode version

Theorem uzind4 10904
Description: Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind4.5  |-  ( M  e.  ZZ  ->  ps )
uzind4.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzel2 10858 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 10862 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 eluzle 10865 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
4 breq2 4291 . . . 4  |-  ( m  =  N  ->  ( M  <_  m  <->  M  <_  N ) )
54elrab 3112 . . 3  |-  ( N  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
62, 3, 5sylanbrc 664 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  { m  e.  ZZ  |  M  <_  m } )
7 uzind4.1 . . 3  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
8 uzind4.2 . . 3  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
9 uzind4.3 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
10 uzind4.4 . . 3  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
11 uzind4.5 . . 3  |-  ( M  e.  ZZ  ->  ps )
12 breq2 4291 . . . . . 6  |-  ( m  =  k  ->  ( M  <_  m  <->  M  <_  k ) )
1312elrab 3112 . . . . 5  |-  ( k  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( k  e.  ZZ  /\  M  <_ 
k ) )
14 eluz2 10859 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_ 
k ) )
1514biimpri 206 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  k  e.  ( ZZ>= `  M )
)
16153expb 1188 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( k  e.  ZZ  /\  M  <_  k )
)  ->  k  e.  ( ZZ>= `  M )
)
1713, 16sylan2b 475 . . . 4  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  k  e.  ( ZZ>= `  M )
)
18 uzind4.6 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
1917, 18syl 16 . . 3  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ( ch  ->  th ) )
207, 8, 9, 10, 11, 19uzind3 10727 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ta )
211, 6, 20syl2anc 661 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2714   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   1c1 9275    + caddc 9277    <_ cle 9411   ZZcz 10638   ZZ>=cuz 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854
This theorem is referenced by:  uzind4ALT  10905  uzind4s  10906  uzind4s2  10907  uzind4i  10908  uzwo  10909  uzwoOLD  10910  seqcl2  11816  seqfveq2  11820  seqshft2  11824  monoord  11828  seqsplit  11831  seqf1o  11839  seqid2  11844  seqhomo  11845  leexp2r  11913  cvgrat  13335  ruclem9  13512  dvdsfac  13580  smuval2  13670  smupvallem  13671  seq1st  13738  prmreclem4  13972  vdwlem13  14046  2expltfac  14111  1stcelcls  19040  caubl  20793  caublcls  20794  volsuplem  21011  cpnord  21384  aaliou3lem2  21784  bcmono  22591  sseqp1  26730  clim2prod  27354  ntrivcvgfvn0  27365  fprodabs  27435  fprodefsum  27436  iprodefisumlem  27455  sdclem2  28591  seqpo  28596  mettrifi  28606  incssnn0  29000  climsuselem1  29733
  Copyright terms: Public domain W3C validator