MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Unicode version

Theorem uzind 10845
Description: Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind.5  |-  ( M  e.  ZZ  ->  ps )
uzind.6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 zre 10762 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 10018 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  <_  M )
3 uzind.5 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ps )
42, 3jca 532 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  <_  M  /\  ps ) )
54ancli 551 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
6 breq2 4405 . . . . . . . . . 10  |-  ( j  =  M  ->  ( M  <_  j  <->  M  <_  M ) )
7 uzind.1 . . . . . . . . . 10  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
86, 7anbi12d 710 . . . . . . . . 9  |-  ( j  =  M  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  M  /\  ps )
) )
98elrab 3224 . . . . . . . 8  |-  ( M  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
105, 9sylibr 212 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )
11 peano2z 10798 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
k  +  1 )  e.  ZZ )
1211a1i 11 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  1 )  e.  ZZ ) )
1312adantrd 468 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( k  +  1 )  e.  ZZ ) )
14 zre 10762 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  k  e.  RR )
15 ltp1 10279 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  k  <  ( k  +  1 ) )
1615adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  k  <  ( k  +  1 ) )
17 peano2re 9654 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
1817ancli 551 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  (
k  e.  RR  /\  ( k  +  1 )  e.  RR ) )
19 lelttr 9577 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
20193expb 1189 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  RR  /\  ( k  e.  RR  /\  ( k  +  1 )  e.  RR ) )  ->  ( ( M  <_  k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2118, 20sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2216, 21mpan2d 674 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <  ( k  +  1 ) ) )
23 ltle 9575 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  < 
( k  +  1 )  ->  M  <_  ( k  +  1 ) ) )
2417, 23sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <  (
k  +  1 )  ->  M  <_  (
k  +  1 ) ) )
2522, 24syld 44 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
261, 14, 25syl2an 477 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
2726adantrd 468 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( M  <_ 
k  /\  ch )  ->  M  <_  ( k  +  1 ) ) )
2827expimpd 603 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  M  <_  ( k  +  1 ) ) )
29 uzind.6 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
30293exp 1187 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( M  <_  k  ->  ( ch  ->  th )
) ) )
3130imp4d 592 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  th ) )
3228, 31jcad 533 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( M  <_  (
k  +  1 )  /\  th ) ) )
3313, 32jcad 533 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( M  <_  (
k  +  1 )  /\  th ) ) ) )
34 breq2 4405 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
35 uzind.2 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3634, 35anbi12d 710 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  k  /\  ch )
) )
3736elrab 3224 . . . . . . . . 9  |-  ( k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) ) )
38 breq2 4405 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
39 uzind.3 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4038, 39anbi12d 710 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  ( k  +  1 )  /\  th )
) )
4140elrab 3224 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( ( k  +  1 )  e.  ZZ  /\  ( M  <_  ( k  +  1 )  /\  th ) ) )
4233, 37, 413imtr4g 270 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ->  (
k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4342ralrimiv 2828 . . . . . . 7  |-  ( M  e.  ZZ  ->  A. k  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) }  ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
44 peano5uzti 10843 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  e.  {
j  e.  ZZ  | 
( M  <_  j  /\  ph ) }  /\  A. k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ( k  +  1 )  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4510, 43, 44mp2and 679 . . . . . 6  |-  ( M  e.  ZZ  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
4645sseld 3464 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  { w  e.  ZZ  |  M  <_  w }  ->  N  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } ) )
47 breq2 4405 . . . . . 6  |-  ( w  =  N  ->  ( M  <_  w  <->  M  <_  N ) )
4847elrab 3224 . . . . 5  |-  ( N  e.  { w  e.  ZZ  |  M  <_  w }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
49 breq2 4405 . . . . . . 7  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
50 uzind.4 . . . . . . 7  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5149, 50anbi12d 710 . . . . . 6  |-  ( j  =  N  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  N  /\  ta )
) )
5251elrab 3224 . . . . 5  |-  ( N  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5346, 48, 523imtr3g 269 . . . 4  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) ) )
54533impib 1186 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5554simprd 463 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  <_  N  /\  ta ) )
5655simprd 463 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   {crab 2803    C_ wss 3437   class class class wbr 4401  (class class class)co 6201   RRcr 9393   1c1 9395    + caddc 9397    < clt 9530    <_ cle 9531   ZZcz 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759
This theorem is referenced by:  uzind2  10846  uzind3  10847  nn0ind  10850  fzind  10852  brfi1uzind  12338  algcvga  13873  zindbi  29436
  Copyright terms: Public domain W3C validator