MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx01vtx Structured version   Unicode version

Theorem uvtx01vtx 24694
Description: If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. This theorem could have been stated  ( ( V UnivVertex  (/) )  =/=  (/)  <->  ( # `  V
)  =  1 ), but a lot of auxiliary theorems would have been needed. (Contributed by Alexander van der Vekens, 12-Oct-2017.)
Assertion
Ref Expression
uvtx01vtx  |-  ( ( V UnivVertex  (/) )  =/=  (/)  <->  E. x  V  =  { x } )
Distinct variable group:    x, V

Proof of Theorem uvtx01vtx
Dummy variables  e 
k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4569 . . . . 5  |-  (/)  e.  _V
2 isuvtx 24690 . . . . 5  |-  ( ( V  e.  _V  /\  (/) 
e.  _V )  ->  ( V UnivVertex  (/) )  =  {
x  e.  V  |  A. k  e.  ( V  \  { x }
) { k ,  x }  e.  ran  (/)
} )
31, 2mpan2 669 . . . 4  |-  ( V  e.  _V  ->  ( V UnivVertex  (/) )  =  {
x  e.  V  |  A. k  e.  ( V  \  { x }
) { k ,  x }  e.  ran  (/)
} )
43neeq1d 2731 . . 3  |-  ( V  e.  _V  ->  (
( V UnivVertex  (/) )  =/=  (/)  <->  { x  e.  V  |  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/) }  =/=  (/) ) )
5 rabn0 3804 . . . 4  |-  ( { x  e.  V  |  A. k  e.  ( V  \  { x }
) { k ,  x }  e.  ran  (/)
}  =/=  (/)  <->  E. x  e.  V  A. k  e.  ( V  \  {
x } ) { k ,  x }  e.  ran  (/) )
65a1i 11 . . 3  |-  ( V  e.  _V  ->  ( { x  e.  V  |  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/) }  =/=  (/)  <->  E. x  e.  V  A. k  e.  ( V  \  {
x } ) { k ,  x }  e.  ran  (/) ) )
7 df-rex 2810 . . . 4  |-  ( E. x  e.  V  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/)  <->  E. x
( x  e.  V  /\  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/) ) )
8 noel 3787 . . . . . . . . . 10  |-  -.  {
k ,  x }  e.  (/)
9 rn0 5243 . . . . . . . . . . 11  |-  ran  (/)  =  (/)
109eleq2i 2532 . . . . . . . . . 10  |-  ( { k ,  x }  e.  ran  (/)  <->  { k ,  x }  e.  (/) )
118, 10mtbir 297 . . . . . . . . 9  |-  -.  {
k ,  x }  e.  ran  (/)
1211ralf0 3924 . . . . . . . 8  |-  ( A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/)  <->  ( V  \  { x } )  =  (/) )
1312a1i 11 . . . . . . 7  |-  ( V  e.  _V  ->  ( A. k  e.  ( V  \  { x }
) { k ,  x }  e.  ran  (/)  <->  ( V  \  { x } )  =  (/) ) )
1413anbi2d 701 . . . . . 6  |-  ( V  e.  _V  ->  (
( x  e.  V  /\  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/) )  <->  ( x  e.  V  /\  ( V  \  { x }
)  =  (/) ) ) )
15 ssdif0 3873 . . . . . . . . 9  |-  ( V 
C_  { x }  <->  ( V  \  { x } )  =  (/) )
1615a1i 11 . . . . . . . 8  |-  ( V  e.  _V  ->  ( V  C_  { x }  <->  ( V  \  { x } )  =  (/) ) )
1716bicomd 201 . . . . . . 7  |-  ( V  e.  _V  ->  (
( V  \  {
x } )  =  (/) 
<->  V  C_  { x } ) )
1817anbi2d 701 . . . . . 6  |-  ( V  e.  _V  ->  (
( x  e.  V  /\  ( V  \  {
x } )  =  (/) )  <->  ( x  e.  V  /\  V  C_  { x } ) ) )
19 sssn 4174 . . . . . . . . 9  |-  ( V 
C_  { x }  <->  ( V  =  (/)  \/  V  =  { x } ) )
2019anbi2i 692 . . . . . . . 8  |-  ( ( x  e.  V  /\  V  C_  { x }
)  <->  ( x  e.  V  /\  ( V  =  (/)  \/  V  =  { x } ) ) )
21 n0i 3788 . . . . . . . . . . . 12  |-  ( x  e.  V  ->  -.  V  =  (/) )
2221pm2.21d 106 . . . . . . . . . . 11  |-  ( x  e.  V  ->  ( V  =  (/)  ->  V  =  { x } ) )
2322imp 427 . . . . . . . . . 10  |-  ( ( x  e.  V  /\  V  =  (/) )  ->  V  =  { x } )
24 simpr 459 . . . . . . . . . 10  |-  ( ( x  e.  V  /\  V  =  { x } )  ->  V  =  { x } )
2523, 24jaodan 783 . . . . . . . . 9  |-  ( ( x  e.  V  /\  ( V  =  (/)  \/  V  =  { x } ) )  ->  V  =  { x } )
26 ssnid 4045 . . . . . . . . . . 11  |-  x  e. 
{ x }
27 eleq2 2527 . . . . . . . . . . 11  |-  ( V  =  { x }  ->  ( x  e.  V  <->  x  e.  { x }
) )
2826, 27mpbiri 233 . . . . . . . . . 10  |-  ( V  =  { x }  ->  x  e.  V )
29 olc 382 . . . . . . . . . 10  |-  ( V  =  { x }  ->  ( V  =  (/)  \/  V  =  { x } ) )
3028, 29jca 530 . . . . . . . . 9  |-  ( V  =  { x }  ->  ( x  e.  V  /\  ( V  =  (/)  \/  V  =  { x } ) ) )
3125, 30impbii 188 . . . . . . . 8  |-  ( ( x  e.  V  /\  ( V  =  (/)  \/  V  =  { x } ) )  <->  V  =  {
x } )
3220, 31bitri 249 . . . . . . 7  |-  ( ( x  e.  V  /\  V  C_  { x }
)  <->  V  =  {
x } )
3332a1i 11 . . . . . 6  |-  ( V  e.  _V  ->  (
( x  e.  V  /\  V  C_  { x } )  <->  V  =  { x } ) )
3414, 18, 333bitrd 279 . . . . 5  |-  ( V  e.  _V  ->  (
( x  e.  V  /\  A. k  e.  ( V  \  { x } ) { k ,  x }  e.  ran  (/) )  <->  V  =  { x } ) )
3534exbidv 1719 . . . 4  |-  ( V  e.  _V  ->  ( E. x ( x  e.  V  /\  A. k  e.  ( V  \  {
x } ) { k ,  x }  e.  ran  (/) )  <->  E. x  V  =  { x } ) )
367, 35syl5bb 257 . . 3  |-  ( V  e.  _V  ->  ( E. x  e.  V  A. k  e.  ( V  \  { x }
) { k ,  x }  e.  ran  (/)  <->  E. x  V  =  {
x } ) )
374, 6, 363bitrd 279 . 2  |-  ( V  e.  _V  ->  (
( V UnivVertex  (/) )  =/=  (/)  <->  E. x  V  =  { x } ) )
38 id 22 . . . . . . 7  |-  ( -.  V  e.  _V  ->  -.  V  e.  _V )
3938intnanrd 915 . . . . . 6  |-  ( -.  V  e.  _V  ->  -.  ( V  e.  _V  /\  (/)  e.  _V ) )
40 df-uvtx 24624 . . . . . . 7  |- UnivVertex  =  ( v  e.  _V , 
e  e.  _V  |->  { n  e.  v  | 
A. k  e.  ( v  \  { n } ) { k ,  n }  e.  ran  e } )
4140mpt2ndm0 6489 . . . . . 6  |-  ( -.  ( V  e.  _V  /\  (/)  e.  _V )  -> 
( V UnivVertex  (/) )  =  (/) )
4239, 41syl 16 . . . . 5  |-  ( -.  V  e.  _V  ->  ( V UnivVertex  (/) )  =  (/) )
43 notnot 289 . . . . 5  |-  ( ( V UnivVertex  (/) )  =  (/)  <->  -.  -.  ( V UnivVertex  (/) )  =  (/) )
4442, 43sylib 196 . . . 4  |-  ( -.  V  e.  _V  ->  -. 
-.  ( V UnivVertex  (/) )  =  (/) )
45 df-ne 2651 . . . 4  |-  ( ( V UnivVertex  (/) )  =/=  (/)  <->  -.  ( V UnivVertex  (/) )  =  (/) )
4644, 45sylnibr 303 . . 3  |-  ( -.  V  e.  _V  ->  -.  ( V UnivVertex  (/) )  =/=  (/) )
47 snex 4678 . . . . . 6  |-  { x }  e.  _V
48 eleq1 2526 . . . . . 6  |-  ( V  =  { x }  ->  ( V  e.  _V  <->  { x }  e.  _V ) )
4947, 48mpbiri 233 . . . . 5  |-  ( V  =  { x }  ->  V  e.  _V )
5049exlimiv 1727 . . . 4  |-  ( E. x  V  =  {
x }  ->  V  e.  _V )
5150con3i 135 . . 3  |-  ( -.  V  e.  _V  ->  -. 
E. x  V  =  { x } )
5246, 512falsed 349 . 2  |-  ( -.  V  e.  _V  ->  ( ( V UnivVertex  (/) )  =/=  (/) 
<->  E. x  V  =  { x } ) )
5337, 52pm2.61i 164 1  |-  ( ( V UnivVertex  (/) )  =/=  (/)  <->  E. x  V  =  { x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   {csn 4016   {cpr 4018   ran crn 4989  (class class class)co 6270   UnivVertex cuvtx 24621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-uvtx 24624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator