MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvval Structured version   Unicode version

Theorem uvcvval 18339
Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u  |-  U  =  ( R unitVec  I )
uvcfval.o  |-  .1.  =  ( 1r `  R )
uvcfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
uvcvval  |-  ( ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I
)  /\  K  e.  I )  ->  (
( U `  J
) `  K )  =  if ( K  =  J ,  .1.  ,  .0.  ) )

Proof of Theorem uvcvval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5  |-  U  =  ( R unitVec  I )
2 uvcfval.o . . . . 5  |-  .1.  =  ( 1r `  R )
3 uvcfval.z . . . . 5  |-  .0.  =  ( 0g `  R )
41, 2, 3uvcval 18338 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( U `  J
)  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
54fveq1d 5804 . . 3  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( ( U `  J ) `  K
)  =  ( ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) `  K
) )
65adantr 465 . 2  |-  ( ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I
)  /\  K  e.  I )  ->  (
( U `  J
) `  K )  =  ( ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) `
 K ) )
7 simpr 461 . . 3  |-  ( ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I
)  /\  K  e.  I )  ->  K  e.  I )
8 fvex 5812 . . . . 5  |-  ( 1r
`  R )  e. 
_V
92, 8eqeltri 2538 . . . 4  |-  .1.  e.  _V
10 fvex 5812 . . . . 5  |-  ( 0g
`  R )  e. 
_V
113, 10eqeltri 2538 . . . 4  |-  .0.  e.  _V
129, 11ifex 3969 . . 3  |-  if ( K  =  J ,  .1.  ,  .0.  )  e. 
_V
13 eqeq1 2458 . . . . 5  |-  ( k  =  K  ->  (
k  =  J  <->  K  =  J ) )
1413ifbid 3922 . . . 4  |-  ( k  =  K  ->  if ( k  =  J ,  .1.  ,  .0.  )  =  if ( K  =  J ,  .1.  ,  .0.  ) )
15 eqid 2454 . . . 4  |-  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) )  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) )
1614, 15fvmptg 5884 . . 3  |-  ( ( K  e.  I  /\  if ( K  =  J ,  .1.  ,  .0.  )  e.  _V )  ->  ( ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) `  K )  =  if ( K  =  J ,  .1.  ,  .0.  ) )
177, 12, 16sylancl 662 . 2  |-  ( ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I
)  /\  K  e.  I )  ->  (
( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) `  K
)  =  if ( K  =  J ,  .1.  ,  .0.  ) )
186, 17eqtrd 2495 1  |-  ( ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I
)  /\  K  e.  I )  ->  (
( U `  J
) `  K )  =  if ( K  =  J ,  .1.  ,  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3078   ifcif 3902    |-> cmpt 4461   ` cfv 5529  (class class class)co 6203   0gc0g 14500   1rcur 16728   unitVec cuvc 18335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-uvc 18336
This theorem is referenced by:  uvcvvcl  18340  uvcvvcl2  18341  uvcvv1  18342  uvcvv0  18343
  Copyright terms: Public domain W3C validator