MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Unicode version

Theorem uvcresum 18694
Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u  |-  U  =  ( R unitVec  I )
uvcresum.y  |-  Y  =  ( R freeLMod  I )
uvcresum.b  |-  B  =  ( Base `  Y
)
uvcresum.v  |-  .x.  =  ( .s `  Y )
Assertion
Ref Expression
uvcresum  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( Y  gsumg  ( X  oF  .x.  U
) ) )

Proof of Theorem uvcresum
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7  |-  Y  =  ( R freeLMod  I )
2 eqid 2441 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
3 uvcresum.b . . . . . . 7  |-  B  =  ( Base `  Y
)
41, 2, 3frlmbasf 18664 . . . . . 6  |-  ( ( I  e.  W  /\  X  e.  B )  ->  X : I --> ( Base `  R ) )
543adant1 1013 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X : I --> ( Base `  R ) )
65feqmptd 5908 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( a  e.  I  |->  ( X `  a ) ) )
7 eqid 2441 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
8 simpl1 998 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  R  e.  Ring )
9 ringmnd 17078 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
108, 9syl 16 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  R  e.  Mnd )
11 simpl2 999 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  I  e.  W )
12 simpr 461 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  a  e.  I )
13 simpl2 999 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  I  e.  W )
145ffvelrnda 6013 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( X `  b )  e.  (
Base `  R )
)
15 uvcresum.u . . . . . . . . . . . . . . . . . 18  |-  U  =  ( R unitVec  I )
1615, 1, 3uvcff 18692 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  I  e.  W )  ->  U : I --> B )
17163adant3 1015 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  U : I --> B )
1817ffvelrnda 6013 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( U `  b )  e.  B
)
19 uvcresum.v . . . . . . . . . . . . . . 15  |-  .x.  =  ( .s `  Y )
20 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( .r
`  R )  =  ( .r `  R
)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 18669 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( ( X `  b )  .x.  ( U `  b
) )  =  ( ( I  X.  {
( X `  b
) } )  oF ( .r `  R ) ( U `
 b ) ) )
2214adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  b  e.  I )  /\  a  e.  I )  ->  ( X `  b )  e.  ( Base `  R
) )
231, 2, 3frlmbasf 18664 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  W  /\  ( U `  b )  e.  B )  -> 
( U `  b
) : I --> ( Base `  R ) )
2413, 18, 23syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( U `  b ) : I --> ( Base `  R
) )
2524ffvelrnda 6013 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  b  e.  I )  /\  a  e.  I )  ->  (
( U `  b
) `  a )  e.  ( Base `  R
) )
26 fconstmpt 5030 . . . . . . . . . . . . . . . 16  |-  ( I  X.  { ( X `
 b ) } )  =  ( a  e.  I  |->  ( X `
 b ) )
2726a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( I  X.  { ( X `  b ) } )  =  ( a  e.  I  |->  ( X `  b ) ) )
2824feqmptd 5908 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( U `  b )  =  ( a  e.  I  |->  ( ( U `  b
) `  a )
) )
2913, 22, 25, 27, 28offval2 6538 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( (
I  X.  { ( X `  b ) } )  oF ( .r `  R
) ( U `  b ) )  =  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) )
3021, 29eqtrd 2482 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( ( X `  b )  .x.  ( U `  b
) )  =  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )
311frlmlmod 18650 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  W )  ->  Y  e.  LMod )
32313adant3 1015 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  Y  e.  LMod )
3332adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  Y  e.  LMod )
341frlmsca 18654 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Ring  /\  I  e.  W )  ->  R  =  (Scalar `  Y )
)
35343adant3 1015 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  R  =  (Scalar `  Y )
)
3635fveq2d 5857 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( Base `  R )  =  ( Base `  (Scalar `  Y ) ) )
3736adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( Base `  R )  =  (
Base `  (Scalar `  Y
) ) )
3814, 37eleqtrd 2531 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( X `  b )  e.  (
Base `  (Scalar `  Y
) ) )
39 eqid 2441 . . . . . . . . . . . . . . 15  |-  (Scalar `  Y )  =  (Scalar `  Y )
40 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( Base `  (Scalar `  Y )
)  =  ( Base `  (Scalar `  Y )
)
413, 39, 19, 40lmodvscl 17400 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  LMod  /\  ( X `  b )  e.  ( Base `  (Scalar `  Y ) )  /\  ( U `  b )  e.  B )  -> 
( ( X `  b )  .x.  ( U `  b )
)  e.  B )
4233, 38, 18, 41syl3anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( ( X `  b )  .x.  ( U `  b
) )  e.  B
)
4330, 42eqeltrrd 2530 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) )  e.  B )
441, 2, 3frlmbasf 18664 . . . . . . . . . . . 12  |-  ( ( I  e.  W  /\  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) )  e.  B
)  ->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) : I --> ( Base `  R ) )
4513, 43, 44syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) : I --> ( Base `  R ) )
46 eqid 2441 . . . . . . . . . . . 12  |-  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) )  =  ( a  e.  I  |->  ( ( X `
 b ) ( .r `  R ) ( ( U `  b ) `  a
) ) )
4746fmpt 6034 . . . . . . . . . . 11  |-  ( A. a  e.  I  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  e.  ( Base `  R
)  <->  ( a  e.  I  |->  ( ( X `
 b ) ( .r `  R ) ( ( U `  b ) `  a
) ) ) : I --> ( Base `  R
) )
4845, 47sylibr 212 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  I
)  ->  A. a  e.  I  ( ( X `  b )
( .r `  R
) ( ( U `
 b ) `  a ) )  e.  ( Base `  R
) )
4948r19.21bi 2810 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  b  e.  I )  /\  a  e.  I )  ->  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  e.  ( Base `  R
) )
5049an32s 802 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I )  ->  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  e.  ( Base `  R
) )
51 eqid 2441 . . . . . . . 8  |-  ( b  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) )  =  ( b  e.  I  |->  ( ( X `
 b ) ( .r `  R ) ( ( U `  b ) `  a
) ) )
5250, 51fmptd 6037 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( b  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) : I --> ( Base `  R ) )
5383ad2ant1 1016 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  R  e.  Ring )
54113ad2ant1 1016 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  I  e.  W )
55 simp2 996 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  b  e.  I )
56123ad2ant1 1016 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  a  e.  I )
57 simp3 997 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  b  =/=  a )
5815, 53, 54, 55, 56, 57, 7uvcvv0 18691 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  (
( U `  b
) `  a )  =  ( 0g `  R ) )
5958oveq2d 6294 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  =  ( ( X `
 b ) ( .r `  R ) ( 0g `  R
) ) )
6014adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I )  ->  ( X `  b )  e.  ( Base `  R
) )
61603adant3 1015 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  ( X `  b )  e.  ( Base `  R
) )
622, 20, 7ringrz 17107 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( X `  b )  e.  ( Base `  R
) )  ->  (
( X `  b
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
6353, 61, 62syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  (
( X `  b
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
6459, 63eqtrd 2482 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  W  /\  X  e.  B
)  /\  a  e.  I )  /\  b  e.  I  /\  b  =/=  a )  ->  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  =  ( 0g `  R ) )
6564, 11suppsssn 6934 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( (
b  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) supp  ( 0g `  R ) )  C_  { a } )
662, 7, 10, 11, 12, 52, 65gsumpt 16859 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( R  gsumg  ( b  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )  =  ( ( b  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) `  a
) )
67 fveq2 5853 . . . . . . . . . 10  |-  ( b  =  a  ->  ( X `  b )  =  ( X `  a ) )
68 fveq2 5853 . . . . . . . . . . 11  |-  ( b  =  a  ->  ( U `  b )  =  ( U `  a ) )
6968fveq1d 5855 . . . . . . . . . 10  |-  ( b  =  a  ->  (
( U `  b
) `  a )  =  ( ( U `
 a ) `  a ) )
7067, 69oveq12d 6296 . . . . . . . . 9  |-  ( b  =  a  ->  (
( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) )  =  ( ( X `
 a ) ( .r `  R ) ( ( U `  a ) `  a
) ) )
71 ovex 6306 . . . . . . . . 9  |-  ( ( X `  a ) ( .r `  R
) ( ( U `
 a ) `  a ) )  e. 
_V
7270, 51, 71fvmpt 5938 . . . . . . . 8  |-  ( a  e.  I  ->  (
( b  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) `  a
)  =  ( ( X `  a ) ( .r `  R
) ( ( U `
 a ) `  a ) ) )
7372adantl 466 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( (
b  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) `  a )  =  ( ( X `
 a ) ( .r `  R ) ( ( U `  a ) `  a
) ) )
74 eqid 2441 . . . . . . . . . 10  |-  ( 1r
`  R )  =  ( 1r `  R
)
7515, 8, 11, 12, 74uvcvv1 18690 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( ( U `  a ) `  a )  =  ( 1r `  R ) )
7675oveq2d 6294 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( ( X `  a )
( .r `  R
) ( ( U `
 a ) `  a ) )  =  ( ( X `  a ) ( .r
`  R ) ( 1r `  R ) ) )
775ffvelrnda 6013 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( X `  a )  e.  (
Base `  R )
)
782, 20, 74ringridm 17094 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( X `  a )  e.  ( Base `  R
) )  ->  (
( X `  a
) ( .r `  R ) ( 1r
`  R ) )  =  ( X `  a ) )
798, 77, 78syl2anc 661 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( ( X `  a )
( .r `  R
) ( 1r `  R ) )  =  ( X `  a
) )
8076, 79eqtrd 2482 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( ( X `  a )
( .r `  R
) ( ( U `
 a ) `  a ) )  =  ( X `  a
) )
8173, 80eqtrd 2482 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( (
b  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) `  a )  =  ( X `  a ) )
8266, 81eqtrd 2482 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  a  e.  I
)  ->  ( R  gsumg  ( b  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )  =  ( X `  a ) )
8382mpteq2dva 4520 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (
a  e.  I  |->  ( R  gsumg  ( b  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) ) )  =  ( a  e.  I  |->  ( X `  a ) ) )
846, 83eqtr4d 2485 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( a  e.  I  |->  ( R  gsumg  ( b  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) ) ) )
85 eqid 2441 . . . 4  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
86 simp2 996 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  I  e.  W )
87 simp1 995 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  R  e.  Ring )
88 mptexg 6124 . . . . . 6  |-  ( I  e.  W  ->  (
b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )  e.  _V )
89883ad2ant2 1017 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (
b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )  e.  _V )
90 funmpt 5611 . . . . . 6  |-  Fun  (
b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) )
9190a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  Fun  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) ) )
92 fvex 5863 . . . . . 6  |-  ( 0g
`  Y )  e. 
_V
9392a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( 0g `  Y )  e. 
_V )
941, 7, 3frlmbasfsupp 18661 . . . . . . 7  |-  ( ( I  e.  W  /\  X  e.  B )  ->  X finSupp  ( 0g `  R ) )
95943adant1 1013 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X finSupp  ( 0g `  R ) )
9695fsuppimpd 7835 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( X supp  ( 0g `  R
) )  e.  Fin )
9735eqcomd 2449 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (Scalar `  Y )  =  R )
9897fveq2d 5857 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( 0g `  (Scalar `  Y
) )  =  ( 0g `  R ) )
9998oveq2d 6294 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( X supp  ( 0g `  (Scalar `  Y ) ) )  =  ( X supp  ( 0g `  R ) ) )
100 ssid 3506 . . . . . . . . . 10  |-  ( X supp  ( 0g `  R
) )  C_  ( X supp  ( 0g `  R
) )
10199, 100syl6eqss 3537 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( X supp  ( 0g `  (Scalar `  Y ) ) ) 
C_  ( X supp  ( 0g `  R ) ) )
102 fvex 5863 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  Y )
)  e.  _V
103102a1i 11 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( 0g `  (Scalar `  Y
) )  e.  _V )
1045, 101, 86, 103suppssr 6930 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( X `  b
)  =  ( 0g
`  (Scalar `  Y )
) )
105104oveq1d 6293 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( ( X `  b )  .x.  ( U `  b )
)  =  ( ( 0g `  (Scalar `  Y ) )  .x.  ( U `  b ) ) )
106 eldifi 3609 . . . . . . . 8  |-  ( b  e.  ( I  \ 
( X supp  ( 0g `  R ) ) )  ->  b  e.  I
)
107106, 30sylan2 474 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( ( X `  b )  .x.  ( U `  b )
)  =  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) )
10832adantr 465 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  ->  Y  e.  LMod )
109106, 18sylan2 474 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( U `  b
)  e.  B )
110 eqid 2441 . . . . . . . . 9  |-  ( 0g
`  (Scalar `  Y )
)  =  ( 0g
`  (Scalar `  Y )
)
1113, 39, 19, 110, 85lmod0vs 17416 . . . . . . . 8  |-  ( ( Y  e.  LMod  /\  ( U `  b )  e.  B )  ->  (
( 0g `  (Scalar `  Y ) )  .x.  ( U `  b ) )  =  ( 0g
`  Y ) )
112108, 109, 111syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( ( 0g `  (Scalar `  Y ) ) 
.x.  ( U `  b ) )  =  ( 0g `  Y
) )
113105, 107, 1123eqtr3d 2490 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  /\  b  e.  (
I  \  ( X supp  ( 0g `  R ) ) ) )  -> 
( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) )  =  ( 0g `  Y ) )
114113, 86suppss2 6933 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (
( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) ) supp  ( 0g `  Y ) ) 
C_  ( X supp  ( 0g `  R ) ) )
115 suppssfifsupp 7843 . . . . 5  |-  ( ( ( ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `
 b ) ( .r `  R ) ( ( U `  b ) `  a
) ) ) )  e.  _V  /\  Fun  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) )  /\  ( 0g `  Y )  e.  _V )  /\  ( ( X supp  ( 0g `  R ) )  e.  Fin  /\  (
( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) ) supp  ( 0g `  Y ) ) 
C_  ( X supp  ( 0g `  R ) ) ) )  ->  (
b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) ) finSupp  ( 0g
`  Y ) )
11689, 91, 93, 96, 114, 115syl32anc 1235 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (
b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b
) ( .r `  R ) ( ( U `  b ) `
 a ) ) ) ) finSupp  ( 0g
`  Y ) )
1171, 3, 85, 86, 86, 87, 43, 116frlmgsum 18672 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( Y  gsumg  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r
`  R ) ( ( U `  b
) `  a )
) ) ) )  =  ( a  e.  I  |->  ( R  gsumg  ( b  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) ) ) )
11884, 117eqtr4d 2485 . 2  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( Y  gsumg  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) ) ) )
1195feqmptd 5908 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( b  e.  I  |->  ( X `  b ) ) )
12017feqmptd 5908 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  U  =  ( b  e.  I  |->  ( U `  b ) ) )
12186, 14, 18, 119, 120offval2 6538 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( X  oF  .x.  U
)  =  ( b  e.  I  |->  ( ( X `  b ) 
.x.  ( U `  b ) ) ) )
12230mpteq2dva 4520 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  (
b  e.  I  |->  ( ( X `  b
)  .x.  ( U `  b ) ) )  =  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `
 b ) ( .r `  R ) ( ( U `  b ) `  a
) ) ) ) )
123121, 122eqtrd 2482 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( X  oF  .x.  U
)  =  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) ) )
124123oveq2d 6294 . 2  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  ( Y  gsumg  ( X  oF  .x.  U ) )  =  ( Y  gsumg  ( b  e.  I  |->  ( a  e.  I  |->  ( ( X `  b ) ( .r `  R
) ( ( U `
 b ) `  a ) ) ) ) ) )
125118, 124eqtr4d 2485 1  |-  ( ( R  e.  Ring  /\  I  e.  W  /\  X  e.  B )  ->  X  =  ( Y  gsumg  ( X  oF  .x.  U
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   _Vcvv 3093    \ cdif 3456    C_ wss 3459   {csn 4011   class class class wbr 4434    |-> cmpt 4492    X. cxp 4984   Fun wfun 5569   -->wf 5571   ` cfv 5575  (class class class)co 6278    oFcof 6520   supp csupp 6900   Fincfn 7515   finSupp cfsupp 7828   Basecbs 14506   .rcmulr 14572  Scalarcsca 14574   .scvsca 14575   0gc0g 14711    gsumg cgsu 14712   Mndcmnd 15790   1rcur 17024   Ringcrg 17069   LModclmod 17383   freeLMod cfrlm 18647   unitVec cuvc 18683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-iin 4315  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6522  df-om 6683  df-1st 6782  df-2nd 6783  df-supp 6901  df-recs 7041  df-rdg 7075  df-1o 7129  df-oadd 7133  df-er 7310  df-map 7421  df-ixp 7469  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-fsupp 7829  df-sup 7900  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-7 10602  df-8 10603  df-9 10604  df-10 10605  df-n0 10799  df-z 10868  df-dec 10982  df-uz 11088  df-fz 11679  df-fzo 11801  df-seq 12084  df-hash 12382  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-hom 14595  df-cco 14596  df-0g 14713  df-gsum 14714  df-prds 14719  df-pws 14721  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-mhm 15837  df-submnd 15838  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-subg 16069  df-cntz 16226  df-cmn 16671  df-abl 16672  df-mgp 17013  df-ur 17025  df-ring 17071  df-subrg 17298  df-lmod 17385  df-lss 17450  df-sra 17689  df-rgmod 17690  df-dsmm 18633  df-frlm 18648  df-uvc 18684
This theorem is referenced by:  frlmsslsp  18699  frlmsslspOLD  18700
  Copyright terms: Public domain W3C validator