Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uun132 Structured version   Unicode version

Theorem uun132 37033
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uun132.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
uun132  |-  ( (
ph  /\  ps  /\  ch )  ->  th )

Proof of Theorem uun132
StepHypRef Expression
1 3anass 986 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ( ps  /\  ch ) ) )
2 uun132.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylbi 198 1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator