MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop2 Structured version   Unicode version

Theorem ustuqtop2 19797
Description: Lemma for ustuqtop 19801 (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
ustuqtop2  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
Distinct variable groups:    v, p, U    X, p, v    N, p
Allowed substitution hint:    N( v)

Proof of Theorem ustuqtop2
Dummy variables  w  a  b  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 769 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  ( U  e.  (UnifOn `  X )  /\  p  e.  X
) )
2 simp-7l 771 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  U  e.  (UnifOn `  X ) )
3 simp-4r 766 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  w  e.  U )
4 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  u  e.  U )
5 ustincl 19762 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U  /\  u  e.  U )  ->  (
w  i^i  u )  e.  U )
62, 3, 4, 5syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  ( w  i^i  u )  e.  U
)
7 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  a  =  ( w " {
p } ) )
8 ineq12 3542 . . . . . . . . . . 11  |-  ( ( a  =  ( w
" { p }
)  /\  b  =  ( u " {
p } ) )  ->  ( a  i^i  b )  =  ( ( w " {
p } )  i^i  ( u " {
p } ) ) )
9 vex 2970 . . . . . . . . . . . 12  |-  p  e. 
_V
10 inimasn 5249 . . . . . . . . . . . 12  |-  ( p  e.  _V  ->  (
( w  i^i  u
) " { p } )  =  ( ( w " {
p } )  i^i  ( u " {
p } ) ) )
119, 10ax-mp 5 . . . . . . . . . . 11  |-  ( ( w  i^i  u )
" { p }
)  =  ( ( w " { p } )  i^i  (
u " { p } ) )
128, 11syl6eqr 2488 . . . . . . . . . 10  |-  ( ( a  =  ( w
" { p }
)  /\  b  =  ( u " {
p } ) )  ->  ( a  i^i  b )  =  ( ( w  i^i  u
) " { p } ) )
137, 12sylancom 667 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  ( a  i^i  b )  =  ( ( w  i^i  u
) " { p } ) )
14 imaeq1 5159 . . . . . . . . . . 11  |-  ( x  =  ( w  i^i  u )  ->  (
x " { p } )  =  ( ( w  i^i  u
) " { p } ) )
1514eqeq2d 2449 . . . . . . . . . 10  |-  ( x  =  ( w  i^i  u )  ->  (
( a  i^i  b
)  =  ( x
" { p }
)  <->  ( a  i^i  b )  =  ( ( w  i^i  u
) " { p } ) ) )
1615rspcev 3068 . . . . . . . . 9  |-  ( ( ( w  i^i  u
)  e.  U  /\  ( a  i^i  b
)  =  ( ( w  i^i  u )
" { p }
) )  ->  E. x  e.  U  ( a  i^i  b )  =  ( x " { p } ) )
176, 13, 16syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  E. x  e.  U  ( a  i^i  b )  =  ( x " { p } ) )
18 vex 2970 . . . . . . . . . . 11  |-  a  e. 
_V
1918inex1 4428 . . . . . . . . . 10  |-  ( a  i^i  b )  e. 
_V
20 utopustuq.1 . . . . . . . . . . 11  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
2120ustuqtoplem 19794 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  (
a  i^i  b )  e.  _V )  ->  (
( a  i^i  b
)  e.  ( N `
 p )  <->  E. x  e.  U  ( a  i^i  b )  =  ( x " { p } ) ) )
2219, 21mpan2 671 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
( a  i^i  b
)  e.  ( N `
 p )  <->  E. x  e.  U  ( a  i^i  b )  =  ( x " { p } ) ) )
2322biimpar 485 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  E. x  e.  U  (
a  i^i  b )  =  ( x " { p } ) )  ->  ( a  i^i  b )  e.  ( N `  p ) )
241, 17, 23syl2anc 661 . . . . . . 7  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  /\  u  e.  U )  /\  b  =  ( u " { p } ) )  ->  ( a  i^i  b )  e.  ( N `  p ) )
25 simp-4l 765 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( U  e.  (UnifOn `  X )  /\  p  e.  X
) )
26 simpllr 758 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  b  e.  ( N `  p ) )
27 vex 2970 . . . . . . . . . 10  |-  b  e. 
_V
2820ustuqtoplem 19794 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  b  e.  _V )  ->  (
b  e.  ( N `
 p )  <->  E. u  e.  U  b  =  ( u " {
p } ) ) )
2927, 28mpan2 671 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
b  e.  ( N `
 p )  <->  E. u  e.  U  b  =  ( u " {
p } ) ) )
3029biimpa 484 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  b  e.  ( N `  p
) )  ->  E. u  e.  U  b  =  ( u " {
p } ) )
3125, 26, 30syl2anc 661 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  E. u  e.  U  b  =  ( u " {
p } ) )
3224, 31r19.29a 2857 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  b  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( a  i^i  b )  e.  ( N `  p ) )
3320ustuqtoplem 19794 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  _V )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
3418, 33mpan2 671 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
3534biimpa 484 . . . . . . 7  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. w  e.  U  a  =  ( w " {
p } ) )
3635adantr 465 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  ->  E. w  e.  U  a  =  ( w " {
p } ) )
3732, 36r19.29a 2857 . . . . 5  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  e.  ( N `  p ) )  /\  b  e.  ( N `  p
) )  ->  (
a  i^i  b )  e.  ( N `  p
) )
3837ralrimiva 2794 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  A. b  e.  ( N `  p
) ( a  i^i  b )  e.  ( N `  p ) )
3938ralrimiva 2794 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  A. a  e.  ( N `  p
) A. b  e.  ( N `  p
) ( a  i^i  b )  e.  ( N `  p ) )
40 fvex 5696 . . . 4  |-  ( N `
 p )  e. 
_V
41 inficl 7667 . . . 4  |-  ( ( N `  p )  e.  _V  ->  ( A. a  e.  ( N `  p ) A. b  e.  ( N `  p )
( a  i^i  b
)  e.  ( N `
 p )  <->  ( fi `  ( N `  p
) )  =  ( N `  p ) ) )
4240, 41ax-mp 5 . . 3  |-  ( A. a  e.  ( N `  p ) A. b  e.  ( N `  p
) ( a  i^i  b )  e.  ( N `  p )  <-> 
( fi `  ( N `  p )
)  =  ( N `
 p ) )
4339, 42sylib 196 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  =  ( N `  p
) )
44 eqimss 3403 . 2  |-  ( ( fi `  ( N `
 p ) )  =  ( N `  p )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
4543, 44syl 16 1  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   _Vcvv 2967    i^i cin 3322    C_ wss 3323   {csn 3872    e. cmpt 4345   ran crn 4836   "cima 4838   ` cfv 5413   ficfi 7652  UnifOncust 19754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-fin 7306  df-fi 7653  df-ust 19755
This theorem is referenced by:  ustuqtop  19801  utopsnneiplem  19802
  Copyright terms: Public domain W3C validator