MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssel Structured version   Unicode version

Theorem ustssel 19802
Description: A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
ustssel  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( V  C_  W  ->  W  e.  U ) )

Proof of Theorem ustssel
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  U  e.  (UnifOn `  X )
)
21elfvexd 5739 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  X  e.  _V )
3 isust 19800 . . . . . 6  |-  ( X  e.  _V  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
42, 3syl 16 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
51, 4mpbid 210 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( U  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
65simp3d 1002 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
7 simp1 988 . . . 4  |-  ( ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
) )
87ralimi 2812 . . 3  |-  ( A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  A. v  e.  U  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
) )
96, 8syl 16 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  A. v  e.  U  A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U ) )
10 simp2 989 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  V  e.  U )
11 simp3 990 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  W  C_  ( X  X.  X
) )
12 xpexg 6528 . . . . . . 7  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
132, 2, 12syl2anc 661 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( X  X.  X )  e. 
_V )
1413, 11ssexd 4460 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  W  e.  _V )
15 elpwg 3889 . . . . 5  |-  ( W  e.  _V  ->  ( W  e.  ~P ( X  X.  X )  <->  W  C_  ( X  X.  X ) ) )
1614, 15syl 16 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( W  e.  ~P ( X  X.  X )  <->  W  C_  ( X  X.  X ) ) )
1711, 16mpbird 232 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  W  e.  ~P ( X  X.  X ) )
18 sseq1 3398 . . . . 5  |-  ( v  =  V  ->  (
v  C_  w  <->  V  C_  w
) )
1918imbi1d 317 . . . 4  |-  ( v  =  V  ->  (
( v  C_  w  ->  w  e.  U )  <-> 
( V  C_  w  ->  w  e.  U ) ) )
20 sseq2 3399 . . . . 5  |-  ( w  =  W  ->  ( V  C_  w  <->  V  C_  W
) )
21 eleq1 2503 . . . . 5  |-  ( w  =  W  ->  (
w  e.  U  <->  W  e.  U ) )
2220, 21imbi12d 320 . . . 4  |-  ( w  =  W  ->  (
( V  C_  w  ->  w  e.  U )  <-> 
( V  C_  W  ->  W  e.  U ) ) )
2319, 22rspc2v 3100 . . 3  |-  ( ( V  e.  U  /\  W  e.  ~P ( X  X.  X ) )  ->  ( A. v  e.  U  A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U )  ->  ( V  C_  W  ->  W  e.  U ) ) )
2410, 17, 23syl2anc 661 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( A. v  e.  U  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  ->  ( V  C_  W  ->  W  e.  U ) ) )
259, 24mpd 15 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( V  C_  W  ->  W  e.  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737   _Vcvv 2993    i^i cin 3348    C_ wss 3349   ~Pcpw 3881    _I cid 4652    X. cxp 4859   `'ccnv 4860    |` cres 4863    o. ccom 4865   ` cfv 5439  UnifOncust 19796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-res 4873  df-iota 5402  df-fun 5441  df-fv 5447  df-ust 19797
This theorem is referenced by:  trust  19826  ustuqtop1  19838  ucnprima  19879
  Copyright terms: Public domain W3C validator