MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustincl Structured version   Visualization version   Unicode version

Theorem ustincl 21270
Description: A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
ustincl  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )

Proof of Theorem ustincl
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5914 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
2 isust 21266 . . . . . . . 8  |-  ( X  e.  _V  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
31, 2syl 17 . . . . . . 7  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  e.  (UnifOn `  X )  <->  ( U  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
43ibi 249 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( U  C_ 
~P ( X  X.  X )  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
54simp3d 1028 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
6 sseq1 3464 . . . . . . . . 9  |-  ( v  =  V  ->  (
v  C_  w  <->  V  C_  w
) )
76imbi1d 323 . . . . . . . 8  |-  ( v  =  V  ->  (
( v  C_  w  ->  w  e.  U )  <-> 
( V  C_  w  ->  w  e.  U ) ) )
87ralbidv 2838 . . . . . . 7  |-  ( v  =  V  ->  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  <->  A. w  e.  ~P  ( X  X.  X
) ( V  C_  w  ->  w  e.  U
) ) )
9 ineq1 3638 . . . . . . . . 9  |-  ( v  =  V  ->  (
v  i^i  w )  =  ( V  i^i  w ) )
109eleq1d 2523 . . . . . . . 8  |-  ( v  =  V  ->  (
( v  i^i  w
)  e.  U  <->  ( V  i^i  w )  e.  U
) )
1110ralbidv 2838 . . . . . . 7  |-  ( v  =  V  ->  ( A. w  e.  U  ( v  i^i  w
)  e.  U  <->  A. w  e.  U  ( V  i^i  w )  e.  U
) )
12 sseq2 3465 . . . . . . . 8  |-  ( v  =  V  ->  (
(  _I  |`  X ) 
C_  v  <->  (  _I  |`  X )  C_  V
) )
13 cnveq 5026 . . . . . . . . 9  |-  ( v  =  V  ->  `' v  =  `' V
)
1413eleq1d 2523 . . . . . . . 8  |-  ( v  =  V  ->  ( `' v  e.  U  <->  `' V  e.  U ) )
15 sseq2 3465 . . . . . . . . 9  |-  ( v  =  V  ->  (
( w  o.  w
)  C_  v  <->  ( w  o.  w )  C_  V
) )
1615rexbidv 2912 . . . . . . . 8  |-  ( v  =  V  ->  ( E. w  e.  U  ( w  o.  w
)  C_  v  <->  E. w  e.  U  ( w  o.  w )  C_  V
) )
1712, 14, 163anbi123d 1348 . . . . . . 7  |-  ( v  =  V  ->  (
( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v )  <->  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) )
188, 11, 173anbi123d 1348 . . . . . 6  |-  ( v  =  V  ->  (
( A. w  e. 
~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  (
v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  <-> 
( A. w  e. 
~P  ( X  X.  X ) ( V 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) ) )
1918rspcv 3157 . . . . 5  |-  ( V  e.  U  ->  ( A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  ( A. w  e.  ~P  ( X  X.  X ) ( V 
C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X )  C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w )  C_  V
) ) ) )
205, 19mpan9 476 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  ( A. w  e.  ~P  ( X  X.  X
) ( V  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( V  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  V  /\  `' V  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  V ) ) )
2120simp2d 1027 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  A. w  e.  U  ( V  i^i  w )  e.  U
)
22 ineq2 3639 . . . . 5  |-  ( w  =  W  ->  ( V  i^i  w )  =  ( V  i^i  W
) )
2322eleq1d 2523 . . . 4  |-  ( w  =  W  ->  (
( V  i^i  w
)  e.  U  <->  ( V  i^i  W )  e.  U
) )
2423rspcv 3157 . . 3  |-  ( W  e.  U  ->  ( A. w  e.  U  ( V  i^i  w
)  e.  U  -> 
( V  i^i  W
)  e.  U ) )
2521, 24mpan9 476 . 2  |-  ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )
26253impa 1210 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  e.  U )  ->  ( V  i^i  W )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897   A.wral 2748   E.wrex 2749   _Vcvv 3056    i^i cin 3414    C_ wss 3415   ~Pcpw 3962    _I cid 4762    X. cxp 4850   `'ccnv 4851    |` cres 4854    o. ccom 4856   ` cfv 5600  UnifOncust 21262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-res 4864  df-iota 5564  df-fun 5602  df-fv 5608  df-ust 21263
This theorem is referenced by:  ustexsym  21278  trust  21292  utoptop  21297  restutopopn  21301  ustuqtop2  21305
  Copyright terms: Public domain W3C validator