Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushguhg Structured version   Unicode version

Theorem ushguhg 32743
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.)
Assertion
Ref Expression
ushguhg  |-  ( G  e. USHGraph  ->  G  e. UHGraph  )

Proof of Theorem ushguhg
StepHypRef Expression
1 eqid 2454 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2454 . . . 4  |-  ( .ef  `  G )  =  ( .ef  `  G )
31, 2isushgr 32739 . . 3  |-  ( G  e. USHGraph  ->  ( G  e. USHGraph  <->  ( .ef  `  G ) : dom  ( .ef  `  G ) -1-1-> ( ~P ( Base `  G
)  \  { (/) } ) ) )
4 f1f 5763 . . . 4  |-  ( ( .ef  `  G ) : dom  ( .ef  `  G ) -1-1-> ( ~P ( Base `  G
)  \  { (/) } )  ->  ( .ef  `  G
) : dom  ( .ef  `  G ) --> ( ~P ( Base `  G
)  \  { (/) } ) )
51, 2isuhgr 32738 . . . 4  |-  ( G  e. USHGraph  ->  ( G  e. UHGraph  <->  ( .ef  `  G ) : dom  ( .ef  `  G ) --> ( ~P ( Base `  G
)  \  { (/) } ) ) )
64, 5syl5ibr 221 . . 3  |-  ( G  e. USHGraph  ->  ( ( .ef  `  G ) : dom  ( .ef  `  G ) -1-1-> ( ~P ( Base `  G
)  \  { (/) } )  ->  G  e. UHGraph  )
)
73, 6sylbid 215 . 2  |-  ( G  e. USHGraph  ->  ( G  e. USHGraph  ->  G  e. UHGraph  ) )
87pm2.43i 47 1  |-  ( G  e. USHGraph  ->  G  e. UHGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1823    \ cdif 3458   (/)c0 3783   ~Pcpw 3999   {csn 4016   dom cdm 4988   -->wf 5566   -1-1->wf1 5567   ` cfv 5570   Basecbs 14716   .ef cedgf 32732   UHGraph cuhgr 32733   USHGraph cushgr 32734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-nul 4568
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fv 5578  df-uhgr 32736  df-ushgr 32737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator