MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrasscusgra Structured version   Unicode version

Theorem usgrasscusgra 24147
Description: An undirected simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.)
Assertion
Ref Expression
usgrasscusgra  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  A. e  e.  ran  E E. f  e.  ran  F  e  =  f )
Distinct variable groups:    e, E    e, F, f    e, V
Allowed substitution hints:    E( f)    V( f)

Proof of Theorem usgrasscusgra
Dummy variables  a 
b  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrarnedg 24048 . . . 4  |-  ( ( V USGrph  E  /\  e  e.  ran  E )  ->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  e  =  {
a ,  b } ) )
2 iscusgra0 24121 . . . . . . 7  |-  ( V ComplUSGrph  F  ->  ( V USGrph  F  /\  A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F ) )
3 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  b  e.  V )
4 sneq 4032 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  { k }  =  { b } )
54difeq2d 3617 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  ( V  \  { k } )  =  ( V 
\  { b } ) )
6 preq2 4102 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  { n ,  k }  =  { n ,  b } )
76eleq1d 2531 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  ( { n ,  k }  e.  ran  F  <->  { n ,  b }  e.  ran  F ) )
85, 7raleqbidv 3067 . . . . . . . . . . . . 13  |-  ( k  =  b  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  <->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
98rspcv 3205 . . . . . . . . . . . 12  |-  ( b  e.  V  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
103, 9syl 16 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
11 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  a  e.  V )
12 elsn 4036 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  { b }  <-> 
a  =  b )
13 nne 2663 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  a  =/=  b  <->  a  =  b )
1412, 13bitr4i 252 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  { b }  <->  -.  a  =/=  b
)
1514biimpi 194 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  { b }  ->  -.  a  =/=  b )
1615a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  F  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( a  e.  { b }  ->  -.  a  =/=  b ) )
1716con2d 115 . . . . . . . . . . . . . . 15  |-  ( ( V USGrph  F  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( a  =/=  b  ->  -.  a  e.  { b } ) )
1817imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  -.  a  e.  { b } )
1911, 18eldifd 3482 . . . . . . . . . . . . 13  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  a  e.  ( V  \  {
b } ) )
2019adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  a  e.  ( V  \  { b } ) )
21 preq1 4101 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  { n ,  b }  =  { a ,  b } )
2221eleq1d 2531 . . . . . . . . . . . . 13  |-  ( n  =  a  ->  ( { n ,  b }  e.  ran  F  <->  { a ,  b }  e.  ran  F ) )
2322rspcv 3205 . . . . . . . . . . . 12  |-  ( a  e.  ( V  \  { b } )  ->  ( A. n  e.  ( V  \  {
b } ) { n ,  b }  e.  ran  F  ->  { a ,  b }  e.  ran  F
) )
2420, 23syl 16 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F  ->  { a ,  b }  e.  ran  F
) )
25 eleq1 2534 . . . . . . . . . . . . . 14  |-  ( { a ,  b }  =  e  ->  ( { a ,  b }  e.  ran  F  <->  e  e.  ran  F ) )
2625eqcoms 2474 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  F  <->  e  e.  ran  F ) )
27 equid 1735 . . . . . . . . . . . . . 14  |-  e  =  e
28 equequ2 1743 . . . . . . . . . . . . . . 15  |-  ( f  =  e  ->  (
e  =  f  <->  e  =  e ) )
2928rspcev 3209 . . . . . . . . . . . . . 14  |-  ( ( e  e.  ran  F  /\  e  =  e
)  ->  E. f  e.  ran  F  e  =  f )
3027, 29mpan2 671 . . . . . . . . . . . . 13  |-  ( e  e.  ran  F  ->  E. f  e.  ran  F  e  =  f )
3126, 30syl6bi 228 . . . . . . . . . . . 12  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3231ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( {
a ,  b }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3310, 24, 323syld 55 . . . . . . . . . 10  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3433exp31 604 . . . . . . . . 9  |-  ( V USGrph  F  ->  ( ( a  e.  V  /\  b  e.  V )  ->  (
( a  =/=  b  /\  e  =  {
a ,  b } )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) ) ) )
3534com24 87 . . . . . . . 8  |-  ( V USGrph  F  ->  ( A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  F  -> 
( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) ) )
3635imp 429 . . . . . . 7  |-  ( ( V USGrph  F  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  F )  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) )
372, 36syl 16 . . . . . 6  |-  ( V ComplUSGrph  F  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) )
3837com13 80 . . . . 5  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) ) )
3938rexlimivv 2955 . . . 4  |-  ( E. a  e.  V  E. b  e.  V  (
a  =/=  b  /\  e  =  { a ,  b } )  ->  ( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) )
401, 39syl 16 . . 3  |-  ( ( V USGrph  E  /\  e  e.  ran  E )  -> 
( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) )
4140impancom 440 . 2  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  ( e  e. 
ran  E  ->  E. f  e.  ran  F  e  =  f ) )
4241ralrimiv 2871 1  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  A. e  e.  ran  E E. f  e.  ran  F  e  =  f )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   A.wral 2809   E.wrex 2810    \ cdif 3468   {csn 4022   {cpr 4024   class class class wbr 4442   ran crn 4995   USGrph cusg 23995   ComplUSGrph ccusgra 24082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-card 8311  df-cda 8539  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-hash 12363  df-usgra 23998  df-cusgra 24085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator