MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrasscusgra Structured version   Visualization version   Unicode version

Theorem usgrasscusgra 25290
Description: An undirected simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.)
Assertion
Ref Expression
usgrasscusgra  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  A. e  e.  ran  E E. f  e.  ran  F  e  =  f )
Distinct variable groups:    e, E    e, F, f    e, V
Allowed substitution hints:    E( f)    V( f)

Proof of Theorem usgrasscusgra
Dummy variables  a 
b  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrarnedg 25190 . . . 4  |-  ( ( V USGrph  E  /\  e  e.  ran  E )  ->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  e  =  {
a ,  b } ) )
2 iscusgra0 25264 . . . . . . 7  |-  ( V ComplUSGrph  F  ->  ( V USGrph  F  /\  A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F ) )
3 simplrr 779 . . . . . . . . . . . 12  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  b  e.  V )
4 sneq 3969 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  { k }  =  { b } )
54difeq2d 3540 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  ( V  \  { k } )  =  ( V 
\  { b } ) )
6 preq2 4043 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  { n ,  k }  =  { n ,  b } )
76eleq1d 2533 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  ( { n ,  k }  e.  ran  F  <->  { n ,  b }  e.  ran  F ) )
85, 7raleqbidv 2987 . . . . . . . . . . . . 13  |-  ( k  =  b  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  <->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
98rspcv 3132 . . . . . . . . . . . 12  |-  ( b  e.  V  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
103, 9syl 17 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F ) )
11 simplrl 778 . . . . . . . . . . . . . 14  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  a  e.  V )
12 elsn 3973 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  { b }  <-> 
a  =  b )
13 nne 2647 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  a  =/=  b  <->  a  =  b )
1412, 13bitr4i 260 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  { b }  <->  -.  a  =/=  b
)
1514biimpi 199 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  { b }  ->  -.  a  =/=  b )
1615a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  F  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( a  e.  { b }  ->  -.  a  =/=  b ) )
1716con2d 119 . . . . . . . . . . . . . . 15  |-  ( ( V USGrph  F  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( a  =/=  b  ->  -.  a  e.  { b } ) )
1817imp 436 . . . . . . . . . . . . . 14  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  -.  a  e.  { b } )
1911, 18eldifd 3401 . . . . . . . . . . . . 13  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  a  =/=  b )  ->  a  e.  ( V  \  {
b } ) )
2019adantrr 731 . . . . . . . . . . . 12  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  a  e.  ( V  \  { b } ) )
21 preq1 4042 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  { n ,  b }  =  { a ,  b } )
2221eleq1d 2533 . . . . . . . . . . . . 13  |-  ( n  =  a  ->  ( { n ,  b }  e.  ran  F  <->  { a ,  b }  e.  ran  F ) )
2322rspcv 3132 . . . . . . . . . . . 12  |-  ( a  e.  ( V  \  { b } )  ->  ( A. n  e.  ( V  \  {
b } ) { n ,  b }  e.  ran  F  ->  { a ,  b }  e.  ran  F
) )
2420, 23syl 17 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. n  e.  ( V  \  { b } ) { n ,  b }  e.  ran  F  ->  { a ,  b }  e.  ran  F
) )
25 eleq1 2537 . . . . . . . . . . . . . 14  |-  ( { a ,  b }  =  e  ->  ( { a ,  b }  e.  ran  F  <->  e  e.  ran  F ) )
2625eqcoms 2479 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  F  <->  e  e.  ran  F ) )
27 equid 1863 . . . . . . . . . . . . . 14  |-  e  =  e
28 equequ2 1876 . . . . . . . . . . . . . . 15  |-  ( f  =  e  ->  (
e  =  f  <->  e  =  e ) )
2928rspcev 3136 . . . . . . . . . . . . . 14  |-  ( ( e  e.  ran  F  /\  e  =  e
)  ->  E. f  e.  ran  F  e  =  f )
3027, 29mpan2 685 . . . . . . . . . . . . 13  |-  ( e  e.  ran  F  ->  E. f  e.  ran  F  e  =  f )
3126, 30syl6bi 236 . . . . . . . . . . . 12  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3231ad2antll 743 . . . . . . . . . . 11  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( {
a ,  b }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3310, 24, 323syld 56 . . . . . . . . . 10  |-  ( ( ( V USGrph  F  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  e  =  { a ,  b } ) )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) )
3433exp31 615 . . . . . . . . 9  |-  ( V USGrph  F  ->  ( ( a  e.  V  /\  b  e.  V )  ->  (
( a  =/=  b  /\  e  =  {
a ,  b } )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  F  ->  E. f  e.  ran  F  e  =  f ) ) ) )
3534com24 89 . . . . . . . 8  |-  ( V USGrph  F  ->  ( A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  F  -> 
( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) ) )
3635imp 436 . . . . . . 7  |-  ( ( V USGrph  F  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  F )  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) )
372, 36syl 17 . . . . . 6  |-  ( V ComplUSGrph  F  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  (
( a  e.  V  /\  b  e.  V
)  ->  E. f  e.  ran  F  e  =  f ) ) )
3837com13 82 . . . . 5  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) ) )
3938rexlimivv 2876 . . . 4  |-  ( E. a  e.  V  E. b  e.  V  (
a  =/=  b  /\  e  =  { a ,  b } )  ->  ( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) )
401, 39syl 17 . . 3  |-  ( ( V USGrph  E  /\  e  e.  ran  E )  -> 
( V ComplUSGrph  F  ->  E. f  e.  ran  F  e  =  f ) )
4140impancom 447 . 2  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  ( e  e. 
ran  E  ->  E. f  e.  ran  F  e  =  f ) )
4241ralrimiv 2808 1  |-  ( ( V USGrph  E  /\  V ComplUSGrph  F )  ->  A. e  e.  ran  E E. f  e.  ran  F  e  =  f )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    \ cdif 3387   {csn 3959   {cpr 3961   class class class wbr 4395   ran crn 4840   USGrph cusg 25136   ComplUSGrph ccusgra 25225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-hash 12554  df-usgra 25139  df-cusgra 25228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator