MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgraidx2vlem2 Structured version   Visualization version   Unicode version

Theorem usgraidx2vlem2 25131
Description: Lemma 2 for usgraidx2v 25132. (Contributed by Alexander van der Vekens, 4-Jan-2018.)
Hypothesis
Ref Expression
usgraidx2v.a  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
Assertion
Ref Expression
usgraidx2vlem2  |-  ( ( V USGrph  E  /\  Y  e.  A )  ->  (
I  =  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  ->  ( E `  Y )  =  { I ,  N } ) )
Distinct variable groups:    x, E    x, N    x, Y    z, E    z, N    z, V    z, Y    z, I
Allowed substitution hints:    A( x, z)    I( x)    V( x)

Proof of Theorem usgraidx2vlem2
StepHypRef Expression
1 fveq2 5870 . . . . . 6  |-  ( x  =  Y  ->  ( E `  x )  =  ( E `  Y ) )
21eleq2d 2516 . . . . 5  |-  ( x  =  Y  ->  ( N  e.  ( E `  x )  <->  N  e.  ( E `  Y ) ) )
3 usgraidx2v.a . . . . 5  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
42, 3elrab2 3200 . . . 4  |-  ( Y  e.  A  <->  ( Y  e.  dom  E  /\  N  e.  ( E `  Y
) ) )
54biimpi 198 . . 3  |-  ( Y  e.  A  ->  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )
6 usgraedgreu 25127 . . . . . . 7  |-  ( ( V USGrph  E  /\  Y  e. 
dom  E  /\  N  e.  ( E `  Y
) )  ->  E! z  e.  V  ( E `  Y )  =  { N ,  z } )
763expb 1210 . . . . . 6  |-  ( ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  ->  E! z  e.  V  ( E `  Y )  =  { N ,  z }
)
83usgraidx2vlem1 25130 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  E  /\  Y  e.  A )  ->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  e.  V )
98adantlr 722 . . . . . . . . . . . . . . 15  |-  ( ( ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  /\  Y  e.  A )  ->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  e.  V )
109adantll 721 . . . . . . . . . . . . . 14  |-  ( ( ( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  e.  V )
1110adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V )
12 eleq1 2519 . . . . . . . . . . . . . 14  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( I  e.  V  <->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V ) )
1312adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( I  e.  V  <->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V ) )
1411, 13mpbird 236 . . . . . . . . . . . 12  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  I  e.  V
)
15 prcom 4053 . . . . . . . . . . . . . . . 16  |-  { N ,  z }  =  { z ,  N }
1615eqeq2i 2465 . . . . . . . . . . . . . . 15  |-  ( ( E `  Y )  =  { N , 
z }  <->  ( E `  Y )  =  {
z ,  N }
)
1716reubii 2979 . . . . . . . . . . . . . 14  |-  ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  <->  E! z  e.  V  ( E `  Y )  =  {
z ,  N }
)
1817biimpi 198 . . . . . . . . . . . . 13  |-  ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  ->  E! z  e.  V  ( E `  Y )  =  { z ,  N } )
1918ad3antrrr 737 . . . . . . . . . . . 12  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  E! z  e.  V  ( E `  Y )  =  {
z ,  N }
)
20 preq1 4054 . . . . . . . . . . . . . 14  |-  ( z  =  I  ->  { z ,  N }  =  { I ,  N } )
2120eqeq2d 2463 . . . . . . . . . . . . 13  |-  ( z  =  I  ->  (
( E `  Y
)  =  { z ,  N }  <->  ( E `  Y )  =  {
I ,  N }
) )
2221riota2 6279 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  E! z  e.  V  ( E `  Y )  =  { z ,  N } )  -> 
( ( E `  Y )  =  {
I ,  N }  <->  (
iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I ) )
2314, 19, 22syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( ( E `
 Y )  =  { I ,  N } 
<->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I ) )
2423exbiri 628 . . . . . . . . . 10  |-  ( ( ( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( I  =  (
iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  -> 
( ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  =  I  -> 
( E `  Y
)  =  { I ,  N } ) ) )
2524com13 83 . . . . . . . . 9  |-  ( (
iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y
)  =  { I ,  N } ) ) )
2625eqcoms 2461 . . . . . . . 8  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y
)  =  { I ,  N } ) ) )
2726pm2.43i 49 . . . . . . 7  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y
)  =  { I ,  N } ) )
2827expdcom 441 . . . . . 6  |-  ( ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  /\  ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
297, 28mpancom 676 . . . . 5  |-  ( ( V USGrph  E  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
3029expcom 437 . . . 4  |-  ( ( Y  e.  dom  E  /\  N  e.  ( E `  Y )
)  ->  ( V USGrph  E  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) ) )
3130com23 81 . . 3  |-  ( ( Y  e.  dom  E  /\  N  e.  ( E `  Y )
)  ->  ( Y  e.  A  ->  ( V USGrph  E  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  -> 
( E `  Y
)  =  { I ,  N } ) ) ) )
325, 31mpcom 37 . 2  |-  ( Y  e.  A  ->  ( V USGrph  E  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
3332impcom 432 1  |-  ( ( V USGrph  E  /\  Y  e.  A )  ->  (
I  =  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  ->  ( E `  Y )  =  { I ,  N } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   E!wreu 2741   {crab 2743   {cpr 3972   class class class wbr 4405   dom cdm 4837   ` cfv 5585   iota_crio 6256   USGrph cusg 25069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-hash 12523  df-usgra 25072
This theorem is referenced by:  usgraidx2v  25132
  Copyright terms: Public domain W3C validator