Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrafilem1 Structured version   Visualization version   Unicode version

Theorem usgrafilem1 25218
 Description: The domain of the edge function is the union of the arguments/indices of all edges containing a specific vertex and the arguments/indices of all edges not containing this vertex. (Contributed by Alexander van der Vekens, 4-Jan-2018.)
Hypothesis
Ref Expression
usgrafis.f
Assertion
Ref Expression
usgrafilem1
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem usgrafilem1
StepHypRef Expression
1 uncom 3569 . 2
2 rabxm 3758 . . 3
3 df-nel 2644 . . . . . . 7
43bicomi 207 . . . . . 6
54a1i 11 . . . . 5
65rabbiia 3019 . . . 4
76uneq2i 3576 . . 3
82, 7eqtri 2493 . 2
9 usgrafis.f . . . . 5
109dmeqi 5041 . . . 4
11 ssrab2 3500 . . . . 5
12 ssdmres 5132 . . . . 5
1311, 12mpbi 213 . . . 4
1410, 13eqtri 2493 . . 3
1514uneq1i 3575 . 2
161, 8, 153eqtr4i 2503 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 189   wceq 1452   wcel 1904   wnel 2642  crab 2760   cun 3388   wss 3390   cdm 4839   cres 4841  cfv 5589 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-xp 4845  df-dm 4849  df-res 4851 This theorem is referenced by:  usgrafilem2  25219  cusgrasizeindslem1  25280
 Copyright terms: Public domain W3C validator