MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra2wlkspthlem2 Structured version   Unicode version

Theorem usgra2wlkspthlem2 25346
Description: Lemma 2 for usgra2wlkspth 25347. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Assertion
Ref Expression
usgra2wlkspthlem2  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  ( V USGrph  E  /\  P : ( 0 ... ( # `  F
) ) --> V ) )  ->  ( (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/=  B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  Fun  `' P ) )
Distinct variable groups:    i, E    i, F    P, i
Allowed substitution hints:    A( i)    B( i)    V( i)

Proof of Theorem usgra2wlkspthlem2
StepHypRef Expression
1 oveq2 6313 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  2  ->  (
0 ... ( # `  F
) )  =  ( 0 ... 2 ) )
21feq2d 5733 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  2  ->  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V ) )
3 fz0tp 11900 . . . . . . . . . . . . . . 15  |-  ( 0 ... 2 )  =  { 0 ,  1 ,  2 }
43feq2i 5739 . . . . . . . . . . . . . 14  |-  ( P : ( 0 ... 2 ) --> V  <->  P : { 0 ,  1 ,  2 } --> V )
54biimpi 197 . . . . . . . . . . . . 13  |-  ( P : ( 0 ... 2 ) --> V  ->  P : { 0 ,  1 ,  2 } --> V )
62, 5syl6bi 231 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  2  ->  ( P : ( 0 ... ( # `  F
) ) --> V  ->  P : { 0 ,  1 ,  2 } --> V ) )
76ad2antll 733 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( P :
( 0 ... ( # `
 F ) ) --> V  ->  P : { 0 ,  1 ,  2 } --> V ) )
87adantr 466 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  -> 
( P : ( 0 ... ( # `  F ) ) --> V  ->  P : {
0 ,  1 ,  2 } --> V ) )
98impcom 431 . . . . . . . . 9  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  P : {
0 ,  1 ,  2 } --> V )
10 eqeq12 2441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B )  -> 
( ( P ` 
0 )  =  ( P `  2 )  <-> 
A  =  B ) )
1110biimpd 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B )  -> 
( ( P ` 
0 )  =  ( P `  2 )  ->  A  =  B ) )
1211necon3d 2644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B )  -> 
( A  =/=  B  ->  ( P `  0
)  =/=  ( P `
 2 ) ) )
13123impia 1202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  ->  ( P `  0 )  =/=  ( P `  2
) )
1413adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
2 )  =  B  /\  A  =/=  B
)  /\  ( ( E `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  ( E `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( P ` 
0 )  =/=  ( P `  2 )
)
1514adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( (
( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )  ->  ( P `  0 )  =/=  ( P `  2
) )
1615adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E )  /\  (
( ( P ` 
0 )  =  A  /\  ( P ` 
2 )  =  B  /\  A  =/=  B
)  /\  ( ( E `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  ( E `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )  /\  P :
( 0 ... 2
) --> V )  -> 
( P `  0
)  =/=  ( P `
 2 ) )
17 simplr 760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  V USGrph  E )
18 usgrafun 25074 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( V USGrph  E  ->  Fun  E )
19 wrdf 12680 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F  e. Word  dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
20 oveq2 6313 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 2 ) )
2120feq2d 5733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  F )  =  2  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  <->  F :
( 0..^ 2 ) --> dom  E ) )
22 c0ex 9644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  0  e.  _V
2322prid1 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  0  e.  { 0 ,  1 }
24 fzo0to2pr 12004 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0..^ 2 )  =  {
0 ,  1 }
2523, 24eleqtrri 2506 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  ( 0..^ 2 )
26 ffvelrn 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F : ( 0..^ 2 ) --> dom  E  /\  0  e.  (
0..^ 2 ) )  ->  ( F ` 
0 )  e.  dom  E )
2725, 26mpan2 675 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( F : ( 0..^ 2 ) --> dom  E  ->  ( F `  0 )  e.  dom  E )
2821, 27syl6bi 231 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  =  2  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( F `  0 )  e.  dom  E ) )
2919, 28mpan9 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  ->  ( F ` 
0 )  e.  dom  E )
30 fvelrn 6030 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  E  /\  ( F `  0 )  e.  dom  E )  -> 
( E `  ( F `  0 )
)  e.  ran  E
)
3118, 29, 30syl2anr 480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( E `  ( F `  0 )
)  e.  ran  E
)
3231adantr 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  ( E `  ( F `  0
) )  e.  ran  E )
33 eleq1 2495 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( E `  ( F `
 0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  ->  (
( E `  ( F `  0 )
)  e.  ran  E  <->  { ( P `  0
) ,  ( P `
 1 ) }  e.  ran  E ) )
3433adantl 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  ( ( E `  ( F `  0 ) )  e.  ran  E  <->  { ( P `  0 ) ,  ( P ` 
1 ) }  e.  ran  E ) )
3532, 34mpbid 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  { ( P `  0 ) ,  ( P ` 
1 ) }  e.  ran  E )
36 usgraedgrn 25106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V USGrph  E  /\  { ( P `  0 ) ,  ( P ` 
1 ) }  e.  ran  E )  ->  ( P `  0 )  =/=  ( P `  1
) )
3717, 35, 36syl2anc 665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  ( P `  0 )  =/=  ( P `  1
) )
3837ex 435 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( ( E `  ( F `  0 ) )  =  { ( P `  0 ) ,  ( P ` 
1 ) }  ->  ( P `  0 )  =/=  ( P ` 
1 ) ) )
39 simplr 760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  V USGrph  E )
40 1ex 9645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  1  e.  _V
4140prid2 4109 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  { 0 ,  1 }
4241, 24eleqtrri 2506 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  1  e.  ( 0..^ 2 )
43 ffvelrn 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F : ( 0..^ 2 ) --> dom  E  /\  1  e.  (
0..^ 2 ) )  ->  ( F ` 
1 )  e.  dom  E )
4442, 43mpan2 675 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( F : ( 0..^ 2 ) --> dom  E  ->  ( F `  1 )  e.  dom  E )
4521, 44syl6bi 231 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  =  2  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( F `  1 )  e.  dom  E ) )
4619, 45mpan9 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  ->  ( F ` 
1 )  e.  dom  E )
47 fvelrn 6030 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  E  /\  ( F `  1 )  e.  dom  E )  -> 
( E `  ( F `  1 )
)  e.  ran  E
)
4818, 46, 47syl2anr 480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( E `  ( F `  1 )
)  e.  ran  E
)
4948adantr 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( E `  ( F `  1
) )  e.  ran  E )
50 eleq1 2495 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) }  ->  (
( E `  ( F `  1 )
)  e.  ran  E  <->  { ( P `  1
) ,  ( P `
 2 ) }  e.  ran  E ) )
5150adantl 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( ( E `  ( F `  1 ) )  e.  ran  E  <->  { ( P `  1 ) ,  ( P ` 
2 ) }  e.  ran  E ) )
5249, 51mpbid 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  { ( P `  1 ) ,  ( P ` 
2 ) }  e.  ran  E )
53 usgraedgrn 25106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( V USGrph  E  /\  { ( P `  1 ) ,  ( P ` 
2 ) }  e.  ran  E )  ->  ( P `  1 )  =/=  ( P `  2
) )
5439, 52, 53syl2anc 665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  1 )  =/=  ( P `  2
) )
5554ex 435 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( ( E `  ( F `  1 ) )  =  { ( P `  1 ) ,  ( P ` 
2 ) }  ->  ( P `  1 )  =/=  ( P ` 
2 ) ) )
5638, 55anim12d 565 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( ( ( E `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( E `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } )  ->  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) ) )
5756adantld 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  V USGrph  E )  ->  ( ( ( ( P `  0 )  =  A  /\  ( P `  2 )  =  B  /\  A  =/= 
B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
) ) ) )
5857imp 430 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E
)  /\  ( (
( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )  ->  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
) ) )
5958adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E )  /\  (
( ( P ` 
0 )  =  A  /\  ( P ` 
2 )  =  B  /\  A  =/=  B
)  /\  ( ( E `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  ( E `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )  /\  P :
( 0 ... 2
) --> V )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  1
)  =/=  ( P `
 2 ) ) )
60 3anan12 995 . . . . . . . . . . . . . . 15  |-  ( ( ( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) )  <->  ( ( P `  0 )  =/=  ( P `  2
)  /\  ( ( P `  0 )  =/=  ( P `  1
)  /\  ( P `  1 )  =/=  ( P `  2
) ) ) )
6116, 59, 60sylanbrc 668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e. Word  dom  E  /\  ( # `  F )  =  2 )  /\  V USGrph  E )  /\  (
( ( P ` 
0 )  =  A  /\  ( P ` 
2 )  =  B  /\  A  =/=  B
)  /\  ( ( E `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  ( E `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )  /\  P :
( 0 ... 2
) --> V )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) )
6261exp41 613 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  ->  ( V USGrph  E  ->  ( ( ( ( P `  0 )  =  A  /\  ( P `  2 )  =  B  /\  A  =/= 
B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( P :
( 0 ... 2
) --> V  ->  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) ) ) ) ) )
6362impcom 431 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( P :
( 0 ... 2
) --> V  ->  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) ) ) ) )
64 fveq2 5881 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  =  2  ->  ( P `  ( # `  F
) )  =  ( P `  2 ) )
6564eqeq1d 2424 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  =  2  ->  (
( P `  ( # `
 F ) )  =  B  <->  ( P `  2 )  =  B ) )
66653anbi2d 1340 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  2  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/=  B )  <->  ( ( P `  0 )  =  A  /\  ( P `  2 )  =  B  /\  A  =/= 
B ) ) )
6720, 24syl6eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
6867raleqdv 3028 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  =  2  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  A. i  e.  {
0 ,  1 }  ( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
69 2wlklem 25292 . . . . . . . . . . . . . . . 16  |-  ( A. i  e.  { 0 ,  1 }  ( E `  ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( ( E `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( E `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )
7068, 69syl6bb 264 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  2  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( ( E `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( E `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) ) )
7166, 70anbi12d 715 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  2  ->  (
( ( ( P `
 0 )  =  A  /\  ( P `
 ( # `  F
) )  =  B  /\  A  =/=  B
)  /\  A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) } )  <->  ( (
( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) ) )
722imbi1d 318 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  2  ->  (
( P : ( 0 ... ( # `  F ) ) --> V  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) ) )  <->  ( P : ( 0 ... 2 ) --> V  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) ) ) )
7371, 72imbi12d 321 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  2  ->  (
( ( ( ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B  /\  A  =/=  B
)  /\  A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) } )  -> 
( P : ( 0 ... ( # `  F ) ) --> V  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) ) ) )  <-> 
( ( ( ( P `  0 )  =  A  /\  ( P `  2 )  =  B  /\  A  =/= 
B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( P :
( 0 ... 2
) --> V  ->  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) ) ) ) ) )
7473ad2antll 733 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( ( ( ( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/=  B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) ) )  <->  ( ( ( ( P `  0
)  =  A  /\  ( P `  2 )  =  B  /\  A  =/=  B )  /\  (
( E `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( E `  ( F `
 1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) )  ->  ( P :
( 0 ... 2
) --> V  ->  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) ) ) ) ) )
7563, 74mpbird 235 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) ) ) )
7675imp 430 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  -> 
( P : ( 0 ... ( # `  F ) ) --> V  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) ) ) )
7776impcom 431 . . . . . . . . 9  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  ( ( P `
 0 )  =/=  ( P `  1
)  /\  ( P `  0 )  =/=  ( P `  2
)  /\  ( P `  1 )  =/=  ( P `  2
) ) )
78 2z 10976 . . . . . . . . . . . 12  |-  2  e.  ZZ
7922, 40, 783pm3.2i 1183 . . . . . . . . . . 11  |-  ( 0  e.  _V  /\  1  e.  _V  /\  2  e.  ZZ )
80 0ne1 10684 . . . . . . . . . . . 12  |-  0  =/=  1
81 0ne2 10828 . . . . . . . . . . . 12  |-  0  =/=  2
82 1ne2 10829 . . . . . . . . . . . 12  |-  1  =/=  2
8380, 81, 823pm3.2i 1183 . . . . . . . . . . 11  |-  ( 0  =/=  1  /\  0  =/=  2  /\  1  =/=  2 )
8479, 83pm3.2i 456 . . . . . . . . . 10  |-  ( ( 0  e.  _V  /\  1  e.  _V  /\  2  e.  ZZ )  /\  (
0  =/=  1  /\  0  =/=  2  /\  1  =/=  2 ) )
85 eqid 2422 . . . . . . . . . . 11  |-  { 0 ,  1 ,  2 }  =  { 0 ,  1 ,  2 }
8685f13dfv 6188 . . . . . . . . . 10  |-  ( ( ( 0  e.  _V  /\  1  e.  _V  /\  2  e.  ZZ )  /\  ( 0  =/=  1  /\  0  =/=  2  /\  1  =/=  2
) )  ->  ( P : { 0 ,  1 ,  2 }
-1-1-> V  <->  ( P : { 0 ,  1 ,  2 } --> V  /\  ( ( P ` 
0 )  =/=  ( P `  1 )  /\  ( P `  0
)  =/=  ( P `
 2 )  /\  ( P `  1 )  =/=  ( P ` 
2 ) ) ) ) )
8784, 86mp1i 13 . . . . . . . . 9  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  ( P : { 0 ,  1 ,  2 } -1-1-> V  <->  ( P : { 0 ,  1 ,  2 } --> V  /\  (
( P `  0
)  =/=  ( P `
 1 )  /\  ( P `  0 )  =/=  ( P ` 
2 )  /\  ( P `  1 )  =/=  ( P `  2
) ) ) ) )
889, 77, 87mpbir2and 930 . . . . . . . 8  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  P : {
0 ,  1 ,  2 } -1-1-> V )
89 df-f1 5606 . . . . . . . 8  |-  ( P : { 0 ,  1 ,  2 }
-1-1-> V  <->  ( P : { 0 ,  1 ,  2 } --> V  /\  Fun  `' P ) )
9088, 89sylib 199 . . . . . . 7  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  ( P : { 0 ,  1 ,  2 } --> V  /\  Fun  `' P ) )
9190simprd 464 . . . . . 6  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) ) )  ->  Fun  `' P
)
9291expcom 436 . . . . 5  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 ) )  /\  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )  -> 
( P : ( 0 ... ( # `  F ) ) --> V  ->  Fun  `' P
) )
9392ex 435 . . . 4  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  ( P : ( 0 ... ( # `  F
) ) --> V  ->  Fun  `' P ) ) )
9493com23 81 . . 3  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  ( # `  F )  =  2 ) )  ->  ( P :
( 0 ... ( # `
 F ) ) --> V  ->  ( (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/=  B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  Fun  `' P ) ) )
9594impancom 441 . 2  |-  ( ( V USGrph  E  /\  P :
( 0 ... ( # `
 F ) ) --> V )  ->  (
( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  ->  ( ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/= 
B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  Fun  `' P ) ) )
9695impcom 431 1  |-  ( ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  2 )  /\  ( V USGrph  E  /\  P : ( 0 ... ( # `  F
) ) --> V ) )  ->  ( (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B  /\  A  =/=  B )  /\  A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } )  ->  Fun  `' P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   _Vcvv 3080   {cpr 4000   {ctp 4002   class class class wbr 4423   `'ccnv 4852   dom cdm 4853   ran crn 4854   Fun wfun 5595   -->wf 5597   -1-1->wf1 5598   ` cfv 5601  (class class class)co 6305   0cc0 9546   1c1 9547    + caddc 9549   2c2 10666   ZZcz 10944   ...cfz 11791  ..^cfzo 11922   #chash 12521  Word cword 12660   USGrph cusg 25055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-fzo 11923  df-hash 12522  df-word 12668  df-usgra 25058
This theorem is referenced by:  usgra2wlkspth  25347
  Copyright terms: Public domain W3C validator