MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra1v Structured version   Unicode version

Theorem usgra1v 23443
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.)
Assertion
Ref Expression
usgra1v  |-  ( { A } USGrph  E  <->  E  =  (/) )

Proof of Theorem usgra1v
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 usgrav 23405 . . . . 5  |-  ( { A } USGrph  E  ->  ( { A }  e.  _V  /\  E  e.  _V ) )
2 isusgra 23407 . . . . . . . . 9  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
32adantr 465 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
4 eqidd 2452 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  E  =  E )
5 eqidd 2452 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  dom  E  =  dom  E )
6 pwsn 4183 . . . . . . . . . . . . . 14  |-  ~P { A }  =  { (/)
,  { A } }
76difeq1i 3568 . . . . . . . . . . . . 13  |-  ( ~P { A }  \  { (/) } )  =  ( { (/) ,  { A } }  \  { (/)
} )
8 snnzg 4090 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
98necomd 2719 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  (/)  =/=  { A } )
109adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (/)  =/=  { A } )
11 difprsn1 4108 . . . . . . . . . . . . . 14  |-  ( (/)  =/=  { A }  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
137, 12syl5eq 2504 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( ~P { A }  \  { (/) } )  =  { { A } } )
14 biidd 237 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (
( # `  x )  =  2  <->  ( # `  x
)  =  2 ) )
1513, 14rabeqbidv 3063 . . . . . . . . . . 11  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  { x  e. 
{ { A } }  |  ( # `  x
)  =  2 } )
16 hashsng 12237 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( # `
 { A }
)  =  1 )
17 1ne2 10635 . . . . . . . . . . . . . . . . 17  |-  1  =/=  2
18 neeq1 2729 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  { A } )  =  1  ->  ( ( # `  { A } )  =/=  2  <->  1  =/=  2 ) )
1917, 18mpbiri 233 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { A } )  =  1  ->  ( # `  { A } )  =/=  2
)
2019neneqd 2651 . . . . . . . . . . . . . . 15  |-  ( (
# `  { A } )  =  1  ->  -.  ( # `  { A } )  =  2 )
2116, 20syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
22 0ne2 10634 . . . . . . . . . . . . . . . . 17  |-  0  =/=  2
2322a1i 11 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  0  =/=  2 )
2423neneqd 2651 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  -.  0  =  2 )
25 snprc 4037 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2625biimpi 194 . . . . . . . . . . . . . . . . . 18  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
2726fveq2d 5793 . . . . . . . . . . . . . . . . 17  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  (
# `  (/) ) )
28 hash0 12236 . . . . . . . . . . . . . . . . 17  |-  ( # `  (/) )  =  0
2927, 28syl6eq 2508 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  0 )
3029eqeq1d 2453 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  ( ( # `  { A } )  =  2  <->  0  =  2 ) )
3124, 30mtbird 301 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
3221, 31pm2.61i 164 . . . . . . . . . . . . 13  |-  -.  ( # `
 { A }
)  =  2
33 snex 4631 . . . . . . . . . . . . . 14  |-  { A }  e.  _V
34 fveq2 5789 . . . . . . . . . . . . . . . 16  |-  ( x  =  { A }  ->  ( # `  x
)  =  ( # `  { A } ) )
3534eqeq1d 2453 . . . . . . . . . . . . . . 15  |-  ( x  =  { A }  ->  ( ( # `  x
)  =  2  <->  ( # `
 { A }
)  =  2 ) )
3635notbid 294 . . . . . . . . . . . . . 14  |-  ( x  =  { A }  ->  ( -.  ( # `  x )  =  2  <->  -.  ( # `  { A } )  =  2 ) )
3733, 36ralsn 4013 . . . . . . . . . . . . 13  |-  ( A. x  e.  { { A } }  -.  ( # `
 x )  =  2  <->  -.  ( # `  { A } )  =  2 )
3832, 37mpbir 209 . . . . . . . . . . . 12  |-  A. x  e.  { { A } }  -.  ( # `  x
)  =  2
39 rabeq0 3757 . . . . . . . . . . . 12  |-  ( { x  e.  { { A } }  |  (
# `  x )  =  2 }  =  (/)  <->  A. x  e.  { { A } }  -.  ( # `
 x )  =  2 )
4038, 39mpbir 209 . . . . . . . . . . 11  |-  { x  e.  { { A } }  |  ( # `  x
)  =  2 }  =  (/)
4115, 40syl6eq 2508 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  (/) )
424, 5, 41f1eq123d 5734 . . . . . . . . 9  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  <-> 
E : dom  E -1-1-> (/) ) )
43 f1f 5704 . . . . . . . . . 10  |-  ( E : dom  E -1-1-> (/)  ->  E : dom  E --> (/) )
44 f00 5691 . . . . . . . . . . 11  |-  ( E : dom  E --> (/)  <->  ( E  =  (/)  /\  dom  E  =  (/) ) )
4544simplbi 460 . . . . . . . . . 10  |-  ( E : dom  E --> (/)  ->  E  =  (/) )
4643, 45syl 16 . . . . . . . . 9  |-  ( E : dom  E -1-1-> (/)  ->  E  =  (/) )
4742, 46syl6bi 228 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  E  =  (/) ) )
483, 47sylbid 215 . . . . . . 7  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
4948ex 434 . . . . . 6  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( A  e. 
_V  ->  ( { A } USGrph  E  ->  E  =  (/) ) ) )
5049com23 78 . . . . 5  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) ) )
511, 50mpcom 36 . . . 4  |-  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) )
5251com12 31 . . 3  |-  ( A  e.  _V  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
53 usgra0 23424 . . . . 5  |-  ( { A }  e.  _V  ->  { A } USGrph  (/) )
5433, 53ax-mp 5 . . . 4  |-  { A } USGrph 
(/)
55 breq2 4394 . . . 4  |-  ( E  =  (/)  ->  ( { A } USGrph  E  <->  { A } USGrph 
(/) ) )
5654, 55mpbiri 233 . . 3  |-  ( E  =  (/)  ->  { A } USGrph  E )
5752, 56impbid1 203 . 2  |-  ( A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
58 breq1 4393 . . . 4  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <->  (/) USGrph  E ) )
59 usgra0v 23425 . . . 4  |-  ( (/) USGrph  E  <-> 
E  =  (/) )
6058, 59syl6bb 261 . . 3  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <-> 
E  =  (/) ) )
6125, 60sylbi 195 . 2  |-  ( -.  A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
6257, 61pm2.61i 164 1  |-  ( { A } USGrph  E  <->  E  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   {crab 2799   _Vcvv 3068    \ cdif 3423   (/)c0 3735   ~Pcpw 3958   {csn 3975   {cpr 3977   class class class wbr 4390   dom cdm 4938   -->wf 5512   -1-1->wf1 5513   ` cfv 5516   0cc0 9383   1c1 9384   2c2 10472   #chash 12204   USGrph cusg 23399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-hash 12205  df-usgra 23401
This theorem is referenced by:  usgrafisindb1  23457  vdfrgra0  30752  vdgfrgra0  30753
  Copyright terms: Public domain W3C validator