MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra1v Unicode version

Theorem usgra1v 21268
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.)
Assertion
Ref Expression
usgra1v  |-  ( { A } USGrph  E  <->  E  =  (/) )

Proof of Theorem usgra1v
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 usgrav 21231 . . . . 5  |-  ( { A } USGrph  E  ->  ( { A }  e.  _V  /\  E  e.  _V ) )
2 isusgra 21233 . . . . . . . . 9  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
32adantr 452 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
4 eqidd 2381 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  E  =  E )
5 eqidd 2381 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  dom  E  =  dom  E )
6 pwsn 3944 . . . . . . . . . . . . . 14  |-  ~P { A }  =  { (/)
,  { A } }
76difeq1i 3397 . . . . . . . . . . . . 13  |-  ( ~P { A }  \  { (/) } )  =  ( { (/) ,  { A } }  \  { (/)
} )
8 snnzg 3857 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
98necomd 2626 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  (/)  =/=  { A } )
109adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (/)  =/=  { A } )
11 difprsn1 3871 . . . . . . . . . . . . . 14  |-  ( (/)  =/=  { A }  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
137, 12syl5eq 2424 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( ~P { A }  \  { (/) } )  =  { { A } } )
14 biidd 229 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (
( # `  x )  =  2  <->  ( # `  x
)  =  2 ) )
1513, 14rabeqbidv 2887 . . . . . . . . . . 11  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  { x  e. 
{ { A } }  |  ( # `  x
)  =  2 } )
16 hashsng 11567 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( # `
 { A }
)  =  1 )
17 1ne2 10112 . . . . . . . . . . . . . . . . 17  |-  1  =/=  2
18 neeq1 2551 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  { A } )  =  1  ->  ( ( # `  { A } )  =/=  2  <->  1  =/=  2 ) )
1917, 18mpbiri 225 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { A } )  =  1  ->  ( # `  { A } )  =/=  2
)
2019neneqd 2559 . . . . . . . . . . . . . . 15  |-  ( (
# `  { A } )  =  1  ->  -.  ( # `  { A } )  =  2 )
2116, 20syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
22 2ne0 10008 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
2322necomi 2625 . . . . . . . . . . . . . . . . 17  |-  0  =/=  2
2423a1i 11 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  0  =/=  2 )
2524neneqd 2559 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  -.  0  =  2 )
26 snprc 3807 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2726biimpi 187 . . . . . . . . . . . . . . . . . 18  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
2827fveq2d 5665 . . . . . . . . . . . . . . . . 17  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  (
# `  (/) ) )
29 hash0 11566 . . . . . . . . . . . . . . . . 17  |-  ( # `  (/) )  =  0
3028, 29syl6eq 2428 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  0 )
3130eqeq1d 2388 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  ( ( # `  { A } )  =  2  <->  0  =  2 ) )
3225, 31mtbird 293 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
3321, 32pm2.61i 158 . . . . . . . . . . . . 13  |-  -.  ( # `
 { A }
)  =  2
34 snex 4339 . . . . . . . . . . . . . 14  |-  { A }  e.  _V
35 fveq2 5661 . . . . . . . . . . . . . . . 16  |-  ( x  =  { A }  ->  ( # `  x
)  =  ( # `  { A } ) )
3635eqeq1d 2388 . . . . . . . . . . . . . . 15  |-  ( x  =  { A }  ->  ( ( # `  x
)  =  2  <->  ( # `
 { A }
)  =  2 ) )
3736notbid 286 . . . . . . . . . . . . . 14  |-  ( x  =  { A }  ->  ( -.  ( # `  x )  =  2  <->  -.  ( # `  { A } )  =  2 ) )
3834, 37ralsn 3785 . . . . . . . . . . . . 13  |-  ( A. x  e.  { { A } }  -.  ( # `
 x )  =  2  <->  -.  ( # `  { A } )  =  2 )
3933, 38mpbir 201 . . . . . . . . . . . 12  |-  A. x  e.  { { A } }  -.  ( # `  x
)  =  2
40 rabeq0 3585 . . . . . . . . . . . 12  |-  ( { x  e.  { { A } }  |  (
# `  x )  =  2 }  =  (/)  <->  A. x  e.  { { A } }  -.  ( # `
 x )  =  2 )
4139, 40mpbir 201 . . . . . . . . . . 11  |-  { x  e.  { { A } }  |  ( # `  x
)  =  2 }  =  (/)
4215, 41syl6eq 2428 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  (/) )
434, 5, 42f1eq123d 5602 . . . . . . . . 9  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  <-> 
E : dom  E -1-1-> (/) ) )
44 f1f 5572 . . . . . . . . . 10  |-  ( E : dom  E -1-1-> (/)  ->  E : dom  E --> (/) )
45 f00 5561 . . . . . . . . . . 11  |-  ( E : dom  E --> (/)  <->  ( E  =  (/)  /\  dom  E  =  (/) ) )
4645simplbi 447 . . . . . . . . . 10  |-  ( E : dom  E --> (/)  ->  E  =  (/) )
4744, 46syl 16 . . . . . . . . 9  |-  ( E : dom  E -1-1-> (/)  ->  E  =  (/) )
4843, 47syl6bi 220 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  E  =  (/) ) )
493, 48sylbid 207 . . . . . . 7  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
5049ex 424 . . . . . 6  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( A  e. 
_V  ->  ( { A } USGrph  E  ->  E  =  (/) ) ) )
5150com23 74 . . . . 5  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) ) )
521, 51mpcom 34 . . . 4  |-  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) )
5352com12 29 . . 3  |-  ( A  e.  _V  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
54 usgra0 21250 . . . . 5  |-  ( { A }  e.  _V  ->  { A } USGrph  (/) )
5534, 54ax-mp 8 . . . 4  |-  { A } USGrph 
(/)
56 breq2 4150 . . . 4  |-  ( E  =  (/)  ->  ( { A } USGrph  E  <->  { A } USGrph 
(/) ) )
5755, 56mpbiri 225 . . 3  |-  ( E  =  (/)  ->  { A } USGrph  E )
5853, 57impbid1 195 . 2  |-  ( A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
59 breq1 4149 . . . 4  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <->  (/) USGrph  E ) )
60 usgra0v 21251 . . . 4  |-  ( (/) USGrph  E  <-> 
E  =  (/) )
6159, 60syl6bb 253 . . 3  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <-> 
E  =  (/) ) )
6226, 61sylbi 188 . 2  |-  ( -.  A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
6358, 62pm2.61i 158 1  |-  ( { A } USGrph  E  <->  E  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   {crab 2646   _Vcvv 2892    \ cdif 3253   (/)c0 3564   ~Pcpw 3735   {csn 3750   {cpr 3751   class class class wbr 4146   dom cdm 4811   -->wf 5383   -1-1->wf1 5384   ` cfv 5387   0cc0 8916   1c1 8917   2c2 9974   #chash 11538   USGrph cusg 21225
This theorem is referenced by:  usgrafisindb1  21282  vdfrgra0  27768  vdgfrgra0  27769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-hash 11539  df-usgra 21227
  Copyright terms: Public domain W3C validator