Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usg2spthonot0 Structured version   Unicode version

Theorem usg2spthonot0 30317
Description: A simple path of length 2 between two vertices as ordered triple corresponds to two adjacent edges in an undirected simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.)
Assertion
Ref Expression
usg2spthonot0  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  <-> 
( ( S  =  A  /\  T  =  C  /\  A  =/= 
C )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )

Proof of Theorem usg2spthonot0
StepHypRef Expression
1 ne0i 3640 . . . . 5  |-  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  ( A ( V 2SPathOnOt  E ) C )  =/=  (/) )
2 2spontn0vne 30315 . . . . 5  |-  ( ( A ( V 2SPathOnOt  E ) C )  =/=  (/)  ->  A  =/=  C )
31, 2syl 16 . . . 4  |-  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  A  =/=  C )
4 simpl 454 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  V USGrph  E )
54adantl 463 . . . . . . . . . 10  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  V USGrph  E )
6 3simpb 981 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  C  e.  V
) )
76adantl 463 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  e.  V  /\  C  e.  V ) )
87adantl 463 . . . . . . . . . 10  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( A  e.  V  /\  C  e.  V )
)
9 simpl 454 . . . . . . . . . 10  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  A  =/=  C )
10 2pthwlkonot 30313 . . . . . . . . . 10  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( A
( V 2SPathOnOt  E ) C )  =  ( A ( V 2WalksOnOt  E ) C ) )
115, 8, 9, 10syl3anc 1213 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( A ( V 2SPathOnOt  E ) C )  =  ( A ( V 2WalksOnOt  E ) C ) )
1211eleq2d 2508 . . . . . . . 8  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  <->  <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) )
13 usgrav 23189 . . . . . . . . . . . 12  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
1413, 6anim12i 563 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  C  e.  V )
) )
1514adantl 463 . . . . . . . . . 10  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  (
( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  C  e.  V
) ) )
16 el2wlkonotot1 30302 . . . . . . . . . 10  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  C  e.  V
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
1715, 16syl 16 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
18 df-3an 962 . . . . . . . . 9  |-  ( ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )
1917, 18syl6bb 261 . . . . . . . 8  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
2012, 19bitrd 253 . . . . . . 7  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  <->  ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
21 simpll 748 . . . . . . . . . . . . 13  |-  ( ( ( S  =  A  /\  T  =  C )  /\  A  =/= 
C )  ->  S  =  A )
22 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( S  =  A  /\  T  =  C )  ->  T  =  C )
2322adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( S  =  A  /\  T  =  C )  /\  A  =/= 
C )  ->  T  =  C )
24 simpr 458 . . . . . . . . . . . . 13  |-  ( ( ( S  =  A  /\  T  =  C )  /\  A  =/= 
C )  ->  A  =/=  C )
2521, 23, 243jca 1163 . . . . . . . . . . . 12  |-  ( ( ( S  =  A  /\  T  =  C )  /\  A  =/= 
C )  ->  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )
2625ex 434 . . . . . . . . . . 11  |-  ( ( S  =  A  /\  T  =  C )  ->  ( A  =/=  C  ->  ( S  =  A  /\  T  =  C  /\  A  =/=  C
) ) )
2726adantr 462 . . . . . . . . . 10  |-  ( ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( A  =/=  C  ->  ( S  =  A  /\  T  =  C  /\  A  =/= 
C ) ) )
2827com12 31 . . . . . . . . 9  |-  ( A  =/=  C  ->  (
( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( S  =  A  /\  T  =  C  /\  A  =/= 
C ) ) )
2928adantr 462 . . . . . . . 8  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  (
( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( S  =  A  /\  T  =  C  /\  A  =/= 
C ) ) )
305adantl 463 . . . . . . . . . . . 12  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  V USGrph  E )
31 simprrr 759 . . . . . . . . . . . . 13  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )
32 eleq1 2501 . . . . . . . . . . . . . . . 16  |-  ( S  =  A  ->  ( S  e.  V  <->  A  e.  V ) )
3332adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( S  =  A  /\  T  =  C )  ->  ( S  e.  V  <->  A  e.  V ) )
34 eleq1 2501 . . . . . . . . . . . . . . . 16  |-  ( T  =  C  ->  ( T  e.  V  <->  C  e.  V ) )
3534adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( S  =  A  /\  T  =  C )  ->  ( T  e.  V  <->  C  e.  V ) )
3633, 353anbi13d 1286 . . . . . . . . . . . . . 14  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( S  e.  V  /\  B  e.  V  /\  T  e.  V )  <->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) )
3736adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( ( S  e.  V  /\  B  e.  V  /\  T  e.  V )  <->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )
3831, 37mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V ) )
39 usg2wlkonot 30311 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  ( S  e.  V  /\  B  e.  V  /\  T  e.  V )
)  ->  ( <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T )  <-> 
( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E ) ) )
4030, 38, 39syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T )  <-> 
( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E ) ) )
41 preq1 3951 . . . . . . . . . . . . . . . 16  |-  ( S  =  A  ->  { S ,  B }  =  { A ,  B }
)
4241adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( S  =  A  /\  T  =  C )  ->  { S ,  B }  =  { A ,  B } )
4342eleq1d 2507 . . . . . . . . . . . . . 14  |-  ( ( S  =  A  /\  T  =  C )  ->  ( { S ,  B }  e.  ran  E  <->  { A ,  B }  e.  ran  E ) )
44 preq2 3952 . . . . . . . . . . . . . . . 16  |-  ( T  =  C  ->  { B ,  T }  =  { B ,  C }
)
4544adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( S  =  A  /\  T  =  C )  ->  { B ,  T }  =  { B ,  C } )
4645eleq1d 2507 . . . . . . . . . . . . . 14  |-  ( ( S  =  A  /\  T  =  C )  ->  ( { B ,  T }  e.  ran  E  <->  { B ,  C }  e.  ran  E ) )
4743, 46anbi12d 705 . . . . . . . . . . . . 13  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E )  <->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
4847biimpd 207 . . . . . . . . . . . 12  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
4948adantr 462 . . . . . . . . . . 11  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( ( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E )  -> 
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
5040, 49sylbid 215 . . . . . . . . . 10  |-  ( ( ( S  =  A  /\  T  =  C )  /\  ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )  ->  ( <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
5150impancom 438 . . . . . . . . 9  |-  ( ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
5251com12 31 . . . . . . . 8  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  (
( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
5329, 52jcad 530 . . . . . . 7  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  (
( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  ->  ( ( S  =  A  /\  T  =  C  /\  A  =/=  C )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )
5420, 53sylbid 215 . . . . . 6  |-  ( ( A  =/=  C  /\  ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )
5554ex 434 . . . . 5  |-  ( A  =/=  C  ->  (
( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) ) )
5655com23 78 . . . 4  |-  ( A  =/=  C  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  (
( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) ) )
573, 56mpcom 36 . . 3  |-  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  (
( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )
5857com12 31 . 2  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  ->  ( ( S  =  A  /\  T  =  C  /\  A  =/= 
C )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )
59 simpll 748 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )  ->  V USGrph  E )
60 eleq1 2501 . . . . . . . . . . . . . . 15  |-  ( A  =  S  ->  ( A  e.  V  <->  S  e.  V ) )
6160eqcoms 2444 . . . . . . . . . . . . . 14  |-  ( S  =  A  ->  ( A  e.  V  <->  S  e.  V ) )
6261adantr 462 . . . . . . . . . . . . 13  |-  ( ( S  =  A  /\  T  =  C )  ->  ( A  e.  V  <->  S  e.  V ) )
63 eleq1 2501 . . . . . . . . . . . . . . 15  |-  ( C  =  T  ->  ( C  e.  V  <->  T  e.  V ) )
6463eqcoms 2444 . . . . . . . . . . . . . 14  |-  ( T  =  C  ->  ( C  e.  V  <->  T  e.  V ) )
6564adantl 463 . . . . . . . . . . . . 13  |-  ( ( S  =  A  /\  T  =  C )  ->  ( C  e.  V  <->  T  e.  V ) )
6662, 653anbi13d 1286 . . . . . . . . . . . 12  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V ) ) )
6766biimpd 207 . . . . . . . . . . 11  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V )
) )
6867adantld 464 . . . . . . . . . 10  |-  ( ( S  =  A  /\  T  =  C )  ->  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V )
) )
69683adant3 1003 . . . . . . . . 9  |-  ( ( S  =  A  /\  T  =  C  /\  A  =/=  C )  -> 
( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V )
) )
7069impcom 430 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )  ->  ( S  e.  V  /\  B  e.  V  /\  T  e.  V ) )
7159, 70, 39syl2anc 656 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )  ->  ( <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T )  <-> 
( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E ) ) )
72473adant3 1003 . . . . . . . 8  |-  ( ( S  =  A  /\  T  =  C  /\  A  =/=  C )  -> 
( ( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E )  <->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
7372adantl 463 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )  ->  ( ( { S ,  B }  e.  ran  E  /\  { B ,  T }  e.  ran  E )  <->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
7471, 73bitr2d 254 . . . . . 6  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( S  =  A  /\  T  =  C  /\  A  =/=  C ) )  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  <->  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )
7574pm5.32da 636 . . . . 5  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) )  <-> 
( ( S  =  A  /\  T  =  C  /\  A  =/= 
C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
76 df-3an 962 . . . . . . . 8  |-  ( ( S  =  A  /\  T  =  C  /\  A  =/=  C )  <->  ( ( S  =  A  /\  T  =  C )  /\  A  =/=  C
) )
77 ancom 448 . . . . . . . 8  |-  ( ( ( S  =  A  /\  T  =  C )  /\  A  =/= 
C )  <->  ( A  =/=  C  /\  ( S  =  A  /\  T  =  C ) ) )
7876, 77bitri 249 . . . . . . 7  |-  ( ( S  =  A  /\  T  =  C  /\  A  =/=  C )  <->  ( A  =/=  C  /\  ( S  =  A  /\  T  =  C ) ) )
7978anbi1i 690 . . . . . 6  |-  ( ( ( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  ( ( A  =/=  C  /\  ( S  =  A  /\  T  =  C )
)  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )
80 anass 644 . . . . . 6  |-  ( ( ( A  =/=  C  /\  ( S  =  A  /\  T  =  C ) )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  ( A  =/= 
C  /\  ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
8118bicomi 202 . . . . . . 7  |-  ( ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )
8281anbi2i 689 . . . . . 6  |-  ( ( A  =/=  C  /\  ( ( S  =  A  /\  T  =  C )  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )  <->  ( A  =/=  C  /\  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
8379, 80, 823bitri 271 . . . . 5  |-  ( ( ( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  ( A  =/= 
C  /\  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
8475, 83syl6bb 261 . . . 4  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) )  <-> 
( A  =/=  C  /\  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) ) )
8514, 16syl 16 . . . . . 6  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  <-> 
( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) ) )
8685bicomd 201 . . . . 5  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) )  <->  <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) )
8786anbi2d 698 . . . 4  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  C  /\  ( S  =  A  /\  T  =  C  /\  <. S ,  B ,  T >.  e.  ( S ( V 2WalksOnOt  E ) T ) ) )  <-> 
( A  =/=  C  /\  <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )
8884, 87bitrd 253 . . 3  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) )  <-> 
( A  =/=  C  /\  <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )
89 simpll 748 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  V USGrph  E )
907adantr 462 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  ( A  e.  V  /\  C  e.  V )
)
91 simpr 458 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  A  =/=  C )
9210eqcomd 2446 . . . . . . 7  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( A
( V 2WalksOnOt  E ) C )  =  ( A ( V 2SPathOnOt  E ) C ) )
9389, 90, 91, 92syl3anc 1213 . . . . . 6  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  ( A ( V 2WalksOnOt  E ) C )  =  ( A ( V 2SPathOnOt  E ) C ) )
9493eleq2d 2508 . . . . 5  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C ) ) )
9594biimpd 207 . . . 4  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C )  ->  <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C ) ) )
9695expimpd 600 . . 3  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  C  /\  <. S ,  B ,  T >.  e.  ( A ( V 2WalksOnOt  E ) C ) )  ->  <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C ) ) )
9788, 96sylbid 215 . 2  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( S  =  A  /\  T  =  C  /\  A  =/=  C
)  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) )  ->  <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C ) ) )
9858, 97impbid 191 1  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <. S ,  B ,  T >.  e.  ( A ( V 2SPathOnOt  E ) C )  <-> 
( ( S  =  A  /\  T  =  C  /\  A  =/= 
C )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   _Vcvv 2970   (/)c0 3634   {cpr 3876   <.cotp 3882   class class class wbr 4289   ran crn 4837  (class class class)co 6090   USGrph cusg 23183   2WalksOnOt c2wlkonot 30283   2SPathOnOt c2pthonot 30285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-ot 3883  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-hash 12100  df-word 12225  df-usgra 23185  df-wlk 23334  df-trail 23335  df-pth 23336  df-spth 23337  df-wlkon 23340  df-spthon 23343  df-2wlkonot 30286  df-2spthonot 30288
This theorem is referenced by:  usg2spthonot1  30318
  Copyright terms: Public domain W3C validator