MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Unicode version

Theorem uptx 20252
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1  |-  T  =  ( R  tX  S
)
uptx.2  |-  X  = 
U. R
uptx.3  |-  Y  = 
U. S
uptx.4  |-  Z  =  ( X  X.  Y
)
uptx.5  |-  P  =  ( 1st  |`  Z )
uptx.6  |-  Q  =  ( 2nd  |`  Z )
Assertion
Ref Expression
uptx  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Distinct variable groups:    h, F    h, G    P, h    Q, h    R, h    T, h    S, h    U, h    h, X   
h, Y
Allowed substitution hint:    Z( h)

Proof of Theorem uptx
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . . . 5  |-  U. U  =  U. U
2 eqid 2457 . . . . 5  |-  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  =  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)
31, 2txcnmpt 20251 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  ( R  tX  S ) ) )
4 uptx.1 . . . . 5  |-  T  =  ( R  tX  S
)
54oveq2i 6307 . . . 4  |-  ( U  Cn  T )  =  ( U  Cn  ( R  tX  S ) )
63, 5syl6eleqr 2556 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) )
7 uptx.2 . . . . . 6  |-  X  = 
U. R
81, 7cnf 19874 . . . . 5  |-  ( F  e.  ( U  Cn  R )  ->  F : U. U --> X )
9 uptx.3 . . . . . 6  |-  Y  = 
U. S
101, 9cnf 19874 . . . . 5  |-  ( G  e.  ( U  Cn  S )  ->  G : U. U --> Y )
11 ffn 5737 . . . . . . . 8  |-  ( F : U. U --> X  ->  F  Fn  U. U )
1211adantr 465 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  Fn  U. U )
13 fo1st 6819 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
14 fofn 5803 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1513, 14ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
16 ssv 3519 . . . . . . . . . 10  |-  ( X  X.  Y )  C_  _V
17 fnssres 5700 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
1815, 16, 17mp2an 672 . . . . . . . . 9  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
1918a1i 11 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
20 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  x  e.  U. U )  ->  ( F `  x )  e.  X )
21 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  x  e.  U. U )  ->  ( G `  x )  e.  Y )
22 opelxpi 5040 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  X  /\  ( G `  x )  e.  Y )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2320, 21, 22syl2an 477 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  x  e. 
U. U )  /\  ( G : U. U --> Y  /\  x  e.  U. U ) )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2423anandirs 831 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  x  e.  U. U )  ->  <. ( F `  x ) ,  ( G `  x )
>.  e.  ( X  X.  Y ) )
2524, 2fmptd 6056 . . . . . . . . 9  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
) )
26 ffn 5737 . . . . . . . . 9  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
)  ->  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  Fn  U. U )
2725, 26syl 16 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U
)
28 frn 5743 . . . . . . . . 9  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
)  ->  ran  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  C_  ( X  X.  Y ) )
2925, 28syl 16 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ran  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  C_  ( X  X.  Y ) )
30 fnco 5695 . . . . . . . 8  |-  ( ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
3119, 27, 29, 30syl3anc 1228 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
32 fvco3 5950 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
3325, 32sylan 471 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 1st  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
34 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
35 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
3634, 35opeq12d 4227 . . . . . . . . . . 11  |-  ( x  =  z  ->  <. ( F `  x ) ,  ( G `  x ) >.  =  <. ( F `  z ) ,  ( G `  z ) >. )
37 opex 4720 . . . . . . . . . . 11  |-  <. ( F `  z ) ,  ( G `  z ) >.  e.  _V
3836, 2, 37fvmpt 5956 . . . . . . . . . 10  |-  ( z  e.  U. U  -> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z )  =  <. ( F `  z ) ,  ( G `  z ) >. )
3938adantl 466 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) `  z )  =  <. ( F `  z ) ,  ( G `  z )
>. )
4039fveq2d 5876 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 1st  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
41 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  z  e.  U. U )  ->  ( F `  z )  e.  X )
42 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  z  e.  U. U )  ->  ( G `  z )  e.  Y )
43 opelxpi 5040 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  e.  X  /\  ( G `  z )  e.  Y )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4441, 42, 43syl2an 477 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  z  e. 
U. U )  /\  ( G : U. U --> Y  /\  z  e.  U. U ) )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4544anandirs 831 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  <. ( F `  z ) ,  ( G `  z )
>.  e.  ( X  X.  Y ) )
46 fvres 5886 . . . . . . . . . 10  |-  ( <.
( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
)  ->  ( ( 1st  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 1st `  <. ( F `  z ) ,  ( G `  z )
>. ) )
4745, 46syl 16 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )
)
48 fvex 5882 . . . . . . . . . 10  |-  ( F `
 z )  e. 
_V
49 fvex 5882 . . . . . . . . . 10  |-  ( G `
 z )  e. 
_V
5048, 49op1st 6807 . . . . . . . . 9  |-  ( 1st `  <. ( F `  z ) ,  ( G `  z )
>. )  =  ( F `  z )
5147, 50syl6eq 2514 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
5233, 40, 513eqtrrd 2503 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( F `  z )  =  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
5312, 31, 52eqfnfvd 5985 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( ( 1st  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
54 uptx.5 . . . . . . . 8  |-  P  =  ( 1st  |`  Z )
55 uptx.4 . . . . . . . . 9  |-  Z  =  ( X  X.  Y
)
5655reseq2i 5280 . . . . . . . 8  |-  ( 1st  |`  Z )  =  ( 1st  |`  ( X  X.  Y ) )
5754, 56eqtri 2486 . . . . . . 7  |-  P  =  ( 1st  |`  ( X  X.  Y ) )
5857coeq1i 5172 . . . . . 6  |-  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
5953, 58syl6eqr 2516 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
608, 10, 59syl2an 477 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
61 ffn 5737 . . . . . . . 8  |-  ( G : U. U --> Y  ->  G  Fn  U. U )
6261adantl 466 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  Fn  U. U )
63 fo2nd 6820 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
64 fofn 5803 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
6563, 64ax-mp 5 . . . . . . . . . 10  |-  2nd  Fn  _V
66 fnssres 5700 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
6765, 16, 66mp2an 672 . . . . . . . . 9  |-  ( 2nd  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
6867a1i 11 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
69 fnco 5695 . . . . . . . 8  |-  ( ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
7068, 27, 29, 69syl3anc 1228 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
71 fvco3 5950 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
7225, 71sylan 471 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
7339fveq2d 5876 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
74 fvres 5886 . . . . . . . . . 10  |-  ( <.
( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
)  ->  ( ( 2nd  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z )
>. ) )
7545, 74syl 16 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )
)
7648, 49op2nd 6808 . . . . . . . . 9  |-  ( 2nd `  <. ( F `  z ) ,  ( G `  z )
>. )  =  ( G `  z )
7775, 76syl6eq 2514 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
7872, 73, 773eqtrrd 2503 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
7962, 70, 78eqfnfvd 5985 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( ( 2nd  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
80 uptx.6 . . . . . . . 8  |-  Q  =  ( 2nd  |`  Z )
8155reseq2i 5280 . . . . . . . 8  |-  ( 2nd  |`  Z )  =  ( 2nd  |`  ( X  X.  Y ) )
8280, 81eqtri 2486 . . . . . . 7  |-  Q  =  ( 2nd  |`  ( X  X.  Y ) )
8382coeq1i 5172 . . . . . 6  |-  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
8479, 83syl6eqr 2516 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
858, 10, 84syl2an 477 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G  =  ( Q  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
866, 60, 85jca32 535 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
87 eleq1 2529 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( h  e.  ( U  Cn  T )  <-> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) ) )
88 coeq2 5171 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( P  o.  h
)  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
8988eqeq2d 2471 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( F  =  ( P  o.  h )  <-> 
F  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
90 coeq2 5171 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( Q  o.  h
)  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
9190eqeq2d 2471 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( G  =  ( Q  o.  h )  <-> 
G  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
9289, 91anbi12d 710 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
9387, 92anbi12d 710 . . . 4  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) ) )
9493spcegv 3195 . . 3  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  -> 
( ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  /\  G  =  ( Q  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) )  ->  E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
956, 86, 94sylc 60 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
96 eqid 2457 . . . . . . . 8  |-  U. T  =  U. T
971, 96cnf 19874 . . . . . . 7  |-  ( h  e.  ( U  Cn  T )  ->  h : U. U --> U. T
)
98 cntop2 19869 . . . . . . . . 9  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  Top )
99 cntop2 19869 . . . . . . . . 9  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  Top )
1007, 9txuni 20219 . . . . . . . . . 10  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
1014unieqi 4260 . . . . . . . . . 10  |-  U. T  =  U. ( R  tX  S )
102100, 101syl6reqr 2517 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. T  =  ( X  X.  Y ) )
10398, 99, 102syl2an 477 . . . . . . . 8  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U. T  =  ( X  X.  Y ) )
104103feq3d 5725 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h : U. U
--> U. T  <->  h : U. U --> ( X  X.  Y ) ) )
10597, 104syl5ib 219 . . . . . 6  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h  e.  ( U  Cn  T )  ->  h : U. U
--> ( X  X.  Y
) ) )
106105anim1d 564 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
107 3anass 977 . . . . 5  |-  ( ( h : U. U --> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) )
108106, 107syl6ibr 227 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
109108alrimiv 1720 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
110 cntop1 19868 . . . . . . 7  |-  ( F  e.  ( U  Cn  R )  ->  U  e.  Top )
111 uniexg 6596 . . . . . . 7  |-  ( U  e.  Top  ->  U. U  e.  _V )
112110, 111syl 16 . . . . . 6  |-  ( F  e.  ( U  Cn  R )  ->  U. U  e.  _V )
113112adantr 465 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U. U  e.  _V )
1148adantr 465 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F : U. U --> X )
11510adantl 466 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G : U. U --> Y )
11657, 82upxp 20250 . . . . 5  |-  ( ( U. U  e.  _V  /\  F : U. U --> X  /\  G : U. U
--> Y )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
117113, 114, 115, 116syl3anc 1228 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
118 eumo 2314 . . . 4  |-  ( E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
119117, 118syl 16 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
120 moim 2340 . . 3  |-  ( A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( E* h
( h : U. U
--> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
121109, 119, 120sylc 60 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
122 df-reu 2814 . . 3  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  E! h
( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) ) ) )
123 eu5 2311 . . 3  |-  ( E! h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) )  /\  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
124122, 123bitri 249 . 2  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  ( E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  E* h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
12595, 121, 124sylanbrc 664 1  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   E!weu 2283   E*wmo 2284   E!wreu 2809   _Vcvv 3109    C_ wss 3471   <.cop 4038   U.cuni 4251    |-> cmpt 4515    X. cxp 5006   ran crn 5009    |` cres 5010    o. ccom 5012    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   Topctop 19521    Cn ccn 19852    tX ctx 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cn 19855  df-tx 20189
This theorem is referenced by:  txcn  20253
  Copyright terms: Public domain W3C validator