MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Unicode version

Theorem uptx 19994
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1  |-  T  =  ( R  tX  S
)
uptx.2  |-  X  = 
U. R
uptx.3  |-  Y  = 
U. S
uptx.4  |-  Z  =  ( X  X.  Y
)
uptx.5  |-  P  =  ( 1st  |`  Z )
uptx.6  |-  Q  =  ( 2nd  |`  Z )
Assertion
Ref Expression
uptx  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Distinct variable groups:    h, F    h, G    P, h    Q, h    R, h    T, h    S, h    U, h    h, X   
h, Y
Allowed substitution hint:    Z( h)

Proof of Theorem uptx
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . 5  |-  U. U  =  U. U
2 eqid 2467 . . . . 5  |-  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  =  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)
31, 2txcnmpt 19993 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  ( R  tX  S ) ) )
4 uptx.1 . . . . 5  |-  T  =  ( R  tX  S
)
54oveq2i 6306 . . . 4  |-  ( U  Cn  T )  =  ( U  Cn  ( R  tX  S ) )
63, 5syl6eleqr 2566 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) )
7 uptx.2 . . . . . 6  |-  X  = 
U. R
81, 7cnf 19615 . . . . 5  |-  ( F  e.  ( U  Cn  R )  ->  F : U. U --> X )
9 uptx.3 . . . . . 6  |-  Y  = 
U. S
101, 9cnf 19615 . . . . 5  |-  ( G  e.  ( U  Cn  S )  ->  G : U. U --> Y )
11 ffn 5737 . . . . . . . 8  |-  ( F : U. U --> X  ->  F  Fn  U. U )
1211adantr 465 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  Fn  U. U )
13 fo1st 6815 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
14 fofn 5803 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1513, 14ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
16 ssv 3529 . . . . . . . . . 10  |-  ( X  X.  Y )  C_  _V
17 fnssres 5700 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
1815, 16, 17mp2an 672 . . . . . . . . 9  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
1918a1i 11 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
20 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  x  e.  U. U )  ->  ( F `  x )  e.  X )
21 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  x  e.  U. U )  ->  ( G `  x )  e.  Y )
22 opelxpi 5037 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  X  /\  ( G `  x )  e.  Y )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2320, 21, 22syl2an 477 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  x  e. 
U. U )  /\  ( G : U. U --> Y  /\  x  e.  U. U ) )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2423anandirs 829 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  x  e.  U. U )  ->  <. ( F `  x ) ,  ( G `  x )
>.  e.  ( X  X.  Y ) )
2524, 2fmptd 6056 . . . . . . . . 9  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
) )
26 ffn 5737 . . . . . . . . 9  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
)  ->  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  Fn  U. U )
2725, 26syl 16 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U
)
28 frn 5743 . . . . . . . . 9  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
)  ->  ran  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  C_  ( X  X.  Y ) )
2925, 28syl 16 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ran  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  C_  ( X  X.  Y ) )
30 fnco 5695 . . . . . . . 8  |-  ( ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
3119, 27, 29, 30syl3anc 1228 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
32 fvco3 5951 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
3325, 32sylan 471 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 1st  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
34 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
35 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
3634, 35opeq12d 4227 . . . . . . . . . . 11  |-  ( x  =  z  ->  <. ( F `  x ) ,  ( G `  x ) >.  =  <. ( F `  z ) ,  ( G `  z ) >. )
37 opex 4717 . . . . . . . . . . 11  |-  <. ( F `  z ) ,  ( G `  z ) >.  e.  _V
3836, 2, 37fvmpt 5957 . . . . . . . . . 10  |-  ( z  e.  U. U  -> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z )  =  <. ( F `  z ) ,  ( G `  z ) >. )
3938adantl 466 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) `  z )  =  <. ( F `  z ) ,  ( G `  z )
>. )
4039fveq2d 5876 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 1st  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
41 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  z  e.  U. U )  ->  ( F `  z )  e.  X )
42 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  z  e.  U. U )  ->  ( G `  z )  e.  Y )
43 opelxpi 5037 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  e.  X  /\  ( G `  z )  e.  Y )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4441, 42, 43syl2an 477 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  z  e. 
U. U )  /\  ( G : U. U --> Y  /\  z  e.  U. U ) )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4544anandirs 829 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  <. ( F `  z ) ,  ( G `  z )
>.  e.  ( X  X.  Y ) )
46 fvres 5886 . . . . . . . . . 10  |-  ( <.
( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
)  ->  ( ( 1st  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 1st `  <. ( F `  z ) ,  ( G `  z )
>. ) )
4745, 46syl 16 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )
)
48 fvex 5882 . . . . . . . . . 10  |-  ( F `
 z )  e. 
_V
49 fvex 5882 . . . . . . . . . 10  |-  ( G `
 z )  e. 
_V
5048, 49op1st 6803 . . . . . . . . 9  |-  ( 1st `  <. ( F `  z ) ,  ( G `  z )
>. )  =  ( F `  z )
5147, 50syl6eq 2524 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
5233, 40, 513eqtrrd 2513 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( F `  z )  =  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
5312, 31, 52eqfnfvd 5985 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( ( 1st  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
54 uptx.5 . . . . . . . 8  |-  P  =  ( 1st  |`  Z )
55 uptx.4 . . . . . . . . 9  |-  Z  =  ( X  X.  Y
)
5655reseq2i 5276 . . . . . . . 8  |-  ( 1st  |`  Z )  =  ( 1st  |`  ( X  X.  Y ) )
5754, 56eqtri 2496 . . . . . . 7  |-  P  =  ( 1st  |`  ( X  X.  Y ) )
5857coeq1i 5168 . . . . . 6  |-  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
5953, 58syl6eqr 2526 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
608, 10, 59syl2an 477 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
61 ffn 5737 . . . . . . . 8  |-  ( G : U. U --> Y  ->  G  Fn  U. U )
6261adantl 466 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  Fn  U. U )
63 fo2nd 6816 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
64 fofn 5803 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
6563, 64ax-mp 5 . . . . . . . . . 10  |-  2nd  Fn  _V
66 fnssres 5700 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
6765, 16, 66mp2an 672 . . . . . . . . 9  |-  ( 2nd  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
6867a1i 11 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
69 fnco 5695 . . . . . . . 8  |-  ( ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
7068, 27, 29, 69syl3anc 1228 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
71 fvco3 5951 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
7225, 71sylan 471 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
7339fveq2d 5876 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
74 fvres 5886 . . . . . . . . . 10  |-  ( <.
( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
)  ->  ( ( 2nd  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
)  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z )
>. ) )
7545, 74syl 16 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )
)
7648, 49op2nd 6804 . . . . . . . . 9  |-  ( 2nd `  <. ( F `  z ) ,  ( G `  z )
>. )  =  ( G `  z )
7775, 76syl6eq 2524 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
7872, 73, 773eqtrrd 2513 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
7962, 70, 78eqfnfvd 5985 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( ( 2nd  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
80 uptx.6 . . . . . . . 8  |-  Q  =  ( 2nd  |`  Z )
8155reseq2i 5276 . . . . . . . 8  |-  ( 2nd  |`  Z )  =  ( 2nd  |`  ( X  X.  Y ) )
8280, 81eqtri 2496 . . . . . . 7  |-  Q  =  ( 2nd  |`  ( X  X.  Y ) )
8382coeq1i 5168 . . . . . 6  |-  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
8479, 83syl6eqr 2526 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
858, 10, 84syl2an 477 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G  =  ( Q  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
866, 60, 85jca32 535 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
87 eleq1 2539 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( h  e.  ( U  Cn  T )  <-> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) ) )
88 coeq2 5167 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( P  o.  h
)  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
8988eqeq2d 2481 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( F  =  ( P  o.  h )  <-> 
F  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
90 coeq2 5167 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( Q  o.  h
)  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
9190eqeq2d 2481 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( G  =  ( Q  o.  h )  <-> 
G  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
9289, 91anbi12d 710 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
9387, 92anbi12d 710 . . . 4  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) ) )
9493spcegv 3204 . . 3  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  -> 
( ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  /\  G  =  ( Q  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) )  ->  E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
956, 86, 94sylc 60 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
96 eqid 2467 . . . . . . . 8  |-  U. T  =  U. T
971, 96cnf 19615 . . . . . . 7  |-  ( h  e.  ( U  Cn  T )  ->  h : U. U --> U. T
)
98 cntop2 19610 . . . . . . . . 9  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  Top )
99 cntop2 19610 . . . . . . . . 9  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  Top )
1007, 9txuni 19961 . . . . . . . . . 10  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
1014unieqi 4260 . . . . . . . . . 10  |-  U. T  =  U. ( R  tX  S )
102100, 101syl6reqr 2527 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. T  =  ( X  X.  Y ) )
10398, 99, 102syl2an 477 . . . . . . . 8  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U. T  =  ( X  X.  Y ) )
104 feq3 5721 . . . . . . . 8  |-  ( U. T  =  ( X  X.  Y )  ->  (
h : U. U --> U. T  <->  h : U. U
--> ( X  X.  Y
) ) )
105103, 104syl 16 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h : U. U
--> U. T  <->  h : U. U --> ( X  X.  Y ) ) )
10697, 105syl5ib 219 . . . . . 6  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h  e.  ( U  Cn  T )  ->  h : U. U
--> ( X  X.  Y
) ) )
107106anim1d 564 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
108 3anass 977 . . . . 5  |-  ( ( h : U. U --> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) )
109107, 108syl6ibr 227 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
110109alrimiv 1695 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
111 cntop1 19609 . . . . . . 7  |-  ( F  e.  ( U  Cn  R )  ->  U  e.  Top )
112 uniexg 6592 . . . . . . 7  |-  ( U  e.  Top  ->  U. U  e.  _V )
113111, 112syl 16 . . . . . 6  |-  ( F  e.  ( U  Cn  R )  ->  U. U  e.  _V )
114113adantr 465 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U. U  e.  _V )
1158adantr 465 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F : U. U --> X )
11610adantl 466 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G : U. U --> Y )
11757, 82upxp 19992 . . . . 5  |-  ( ( U. U  e.  _V  /\  F : U. U --> X  /\  G : U. U
--> Y )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
118114, 115, 116, 117syl3anc 1228 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
119 eumo 2308 . . . 4  |-  ( E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
120118, 119syl 16 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
121 moim 2341 . . 3  |-  ( A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( E* h
( h : U. U
--> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
122110, 120, 121sylc 60 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
123 df-reu 2824 . . 3  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  E! h
( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) ) ) )
124 eu5 2305 . . 3  |-  ( E! h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) )  /\  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
125123, 124bitri 249 . 2  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  ( E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  E* h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
12695, 122, 125sylanbrc 664 1  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275   E*wmo 2276   E!wreu 2819   _Vcvv 3118    C_ wss 3481   <.cop 4039   U.cuni 4251    |-> cmpt 4511    X. cxp 5003   ran crn 5006    |` cres 5007    o. ccom 5009    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   ` cfv 5594  (class class class)co 6295   1stc1st 6793   2ndc2nd 6794   Topctop 19263    Cn ccn 19593    tX ctx 19929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-map 7434  df-topgen 14716  df-top 19268  df-bases 19270  df-topon 19271  df-cn 19596  df-tx 19931
This theorem is referenced by:  txcn  19995
  Copyright terms: Public domain W3C validator