Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unxpwdom3 Structured version   Unicode version

Theorem unxpwdom3 30872
Description: Weaker version of unxpwdom 8016 where a function is required only to be cancellative, not an injection.  D and  B are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into  A, each row must hit an element of 
B; by column injectivity, each row can be identified in at least one way by the  B element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE
Hypotheses
Ref Expression
unxpwdom3.av  |-  ( ph  ->  A  e.  V )
unxpwdom3.bv  |-  ( ph  ->  B  e.  W )
unxpwdom3.dv  |-  ( ph  ->  D  e.  X )
unxpwdom3.ov  |-  ( (
ph  /\  a  e.  C  /\  b  e.  D
)  ->  ( a  .+  b )  e.  ( A  u.  B ) )
unxpwdom3.lc  |-  ( ( ( ph  /\  a  e.  C )  /\  (
b  e.  D  /\  c  e.  D )
)  ->  ( (
a  .+  b )  =  ( a  .+  c )  <->  b  =  c ) )
unxpwdom3.rc  |-  ( ( ( ph  /\  d  e.  D )  /\  (
a  e.  C  /\  c  e.  C )
)  ->  ( (
c  .+  d )  =  ( a  .+  d )  <->  c  =  a ) )
unxpwdom3.ni  |-  ( ph  ->  -.  D  ~<_  A )
Assertion
Ref Expression
unxpwdom3  |-  ( ph  ->  C  ~<_*  ( D  X.  B
) )
Distinct variable groups:    a, b,
c, d, B    C, a, b, c, d    D, a, b, c, d    .+ , a,
b, c, d    ph, a,
b, c, d    A, b, c
Allowed substitution hints:    A( a, d)    V( a, b, c, d)    W( a, b, c, d)    X( a, b, c, d)

Proof of Theorem unxpwdom3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unxpwdom3.dv . . 3  |-  ( ph  ->  D  e.  X )
2 unxpwdom3.bv . . 3  |-  ( ph  ->  B  e.  W )
3 xpexg 6587 . . 3  |-  ( ( D  e.  X  /\  B  e.  W )  ->  ( D  X.  B
)  e.  _V )
41, 2, 3syl2anc 661 . 2  |-  ( ph  ->  ( D  X.  B
)  e.  _V )
5 unxpwdom3.ni . . . . . . 7  |-  ( ph  ->  -.  D  ~<_  A )
65adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  C )  ->  -.  D  ~<_  A )
7 unxpwdom3.av . . . . . . . 8  |-  ( ph  ->  A  e.  V )
87ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  C )  /\  A. d  e.  D  -.  ( a  .+  d
)  e.  B )  ->  A  e.  V
)
9 oveq2 6293 . . . . . . . . . . . . . 14  |-  ( d  =  b  ->  (
a  .+  d )  =  ( a  .+  b ) )
109eleq1d 2536 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  (
( a  .+  d
)  e.  B  <->  ( a  .+  b )  e.  B
) )
1110notbid 294 . . . . . . . . . . . 12  |-  ( d  =  b  ->  ( -.  ( a  .+  d
)  e.  B  <->  -.  (
a  .+  b )  e.  B ) )
1211rspcv 3210 . . . . . . . . . . 11  |-  ( b  e.  D  ->  ( A. d  e.  D  -.  ( a  .+  d
)  e.  B  ->  -.  ( a  .+  b
)  e.  B ) )
1312adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  ( A. d  e.  D  -.  ( a  .+  d
)  e.  B  ->  -.  ( a  .+  b
)  e.  B ) )
14 unxpwdom3.ov . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  C  /\  b  e.  D
)  ->  ( a  .+  b )  e.  ( A  u.  B ) )
15143expa 1196 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  (
a  .+  b )  e.  ( A  u.  B
) )
16 elun 3645 . . . . . . . . . . . . 13  |-  ( ( a  .+  b )  e.  ( A  u.  B )  <->  ( (
a  .+  b )  e.  A  \/  (
a  .+  b )  e.  B ) )
1715, 16sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  (
( a  .+  b
)  e.  A  \/  ( a  .+  b
)  e.  B ) )
1817orcomd 388 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  (
( a  .+  b
)  e.  B  \/  ( a  .+  b
)  e.  A ) )
1918ord 377 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  ( -.  ( a  .+  b
)  e.  B  -> 
( a  .+  b
)  e.  A ) )
2013, 19syld 44 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  C )  /\  b  e.  D )  ->  ( A. d  e.  D  -.  ( a  .+  d
)  e.  B  -> 
( a  .+  b
)  e.  A ) )
2120impancom 440 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  C )  /\  A. d  e.  D  -.  ( a  .+  d
)  e.  B )  ->  ( b  e.  D  ->  ( a  .+  b )  e.  A
) )
22 unxpwdom3.lc . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  C )  /\  (
b  e.  D  /\  c  e.  D )
)  ->  ( (
a  .+  b )  =  ( a  .+  c )  <->  b  =  c ) )
2322ex 434 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  C )  ->  (
( b  e.  D  /\  c  e.  D
)  ->  ( (
a  .+  b )  =  ( a  .+  c )  <->  b  =  c ) ) )
2423adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  C )  /\  A. d  e.  D  -.  ( a  .+  d
)  e.  B )  ->  ( ( b  e.  D  /\  c  e.  D )  ->  (
( a  .+  b
)  =  ( a 
.+  c )  <->  b  =  c ) ) )
2521, 24dom2d 7557 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  C )  /\  A. d  e.  D  -.  ( a  .+  d
)  e.  B )  ->  ( A  e.  V  ->  D  ~<_  A ) )
268, 25mpd 15 . . . . . 6  |-  ( ( ( ph  /\  a  e.  C )  /\  A. d  e.  D  -.  ( a  .+  d
)  e.  B )  ->  D  ~<_  A )
276, 26mtand 659 . . . . 5  |-  ( (
ph  /\  a  e.  C )  ->  -.  A. d  e.  D  -.  ( a  .+  d
)  e.  B )
28 dfrex2 2915 . . . . 5  |-  ( E. d  e.  D  ( a  .+  d )  e.  B  <->  -.  A. d  e.  D  -.  (
a  .+  d )  e.  B )
2927, 28sylibr 212 . . . 4  |-  ( (
ph  /\  a  e.  C )  ->  E. d  e.  D  ( a  .+  d )  e.  B
)
30 simprr 756 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  ( a  .+  d
)  e.  B ) )  ->  ( a  .+  d )  e.  B
)
31 simplr 754 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  ( a  .+  d
)  e.  B ) )  ->  a  e.  C )
32 unxpwdom3.rc . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  D )  /\  (
a  e.  C  /\  c  e.  C )
)  ->  ( (
c  .+  d )  =  ( a  .+  d )  <->  c  =  a ) )
3332an4s 824 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  c  e.  C )
)  ->  ( (
c  .+  d )  =  ( a  .+  d )  <->  c  =  a ) )
3433anassrs 648 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  C )  /\  d  e.  D
)  /\  c  e.  C )  ->  (
( c  .+  d
)  =  ( a 
.+  d )  <->  c  =  a ) )
3534adantlrr 720 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  C )  /\  ( d  e.  D  /\  ( a  .+  d
)  e.  B ) )  /\  c  e.  C )  ->  (
( c  .+  d
)  =  ( a 
.+  d )  <->  c  =  a ) )
3631, 35riota5 6272 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  ( a  .+  d
)  e.  B ) )  ->  ( iota_ c  e.  C  ( c 
.+  d )  =  ( a  .+  d
) )  =  a )
3736eqcomd 2475 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  ( a  .+  d
)  e.  B ) )  ->  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  ( a 
.+  d ) ) )
38 eqeq2 2482 . . . . . . . . . 10  |-  ( y  =  ( a  .+  d )  ->  (
( c  .+  d
)  =  y  <->  ( c  .+  d )  =  ( a  .+  d ) ) )
3938riotabidv 6248 . . . . . . . . 9  |-  ( y  =  ( a  .+  d )  ->  ( iota_ c  e.  C  ( c  .+  d )  =  y )  =  ( iota_ c  e.  C  ( c  .+  d
)  =  ( a 
.+  d ) ) )
4039eqeq2d 2481 . . . . . . . 8  |-  ( y  =  ( a  .+  d )  ->  (
a  =  ( iota_ c  e.  C  ( c 
.+  d )  =  y )  <->  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  ( a 
.+  d ) ) ) )
4140rspcev 3214 . . . . . . 7  |-  ( ( ( a  .+  d
)  e.  B  /\  a  =  ( iota_ c  e.  C  ( c 
.+  d )  =  ( a  .+  d
) ) )  ->  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c 
.+  d )  =  y ) )
4230, 37, 41syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  a  e.  C )  /\  (
d  e.  D  /\  ( a  .+  d
)  e.  B ) )  ->  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  y ) )
4342expr 615 . . . . 5  |-  ( ( ( ph  /\  a  e.  C )  /\  d  e.  D )  ->  (
( a  .+  d
)  e.  B  ->  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c 
.+  d )  =  y ) ) )
4443reximdva 2938 . . . 4  |-  ( (
ph  /\  a  e.  C )  ->  ( E. d  e.  D  ( a  .+  d
)  e.  B  ->  E. d  e.  D  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c 
.+  d )  =  y ) ) )
4529, 44mpd 15 . . 3  |-  ( (
ph  /\  a  e.  C )  ->  E. d  e.  D  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  y ) )
46 vex 3116 . . . . . . . . 9  |-  d  e. 
_V
47 vex 3116 . . . . . . . . 9  |-  y  e. 
_V
4846, 47op1std 6795 . . . . . . . 8  |-  ( x  =  <. d ,  y
>.  ->  ( 1st `  x
)  =  d )
4948oveq2d 6301 . . . . . . 7  |-  ( x  =  <. d ,  y
>.  ->  ( c  .+  ( 1st `  x ) )  =  ( c 
.+  d ) )
5046, 47op2ndd 6796 . . . . . . 7  |-  ( x  =  <. d ,  y
>.  ->  ( 2nd `  x
)  =  y )
5149, 50eqeq12d 2489 . . . . . 6  |-  ( x  =  <. d ,  y
>.  ->  ( ( c 
.+  ( 1st `  x
) )  =  ( 2nd `  x )  <-> 
( c  .+  d
)  =  y ) )
5251riotabidv 6248 . . . . 5  |-  ( x  =  <. d ,  y
>.  ->  ( iota_ c  e.  C  ( c  .+  ( 1st `  x ) )  =  ( 2nd `  x ) )  =  ( iota_ c  e.  C  ( c  .+  d
)  =  y ) )
5352eqeq2d 2481 . . . 4  |-  ( x  =  <. d ,  y
>.  ->  ( a  =  ( iota_ c  e.  C  ( c  .+  ( 1st `  x ) )  =  ( 2nd `  x
) )  <->  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  y ) ) )
5453rexxp 5145 . . 3  |-  ( E. x  e.  ( D  X.  B ) a  =  ( iota_ c  e.  C  ( c  .+  ( 1st `  x ) )  =  ( 2nd `  x ) )  <->  E. d  e.  D  E. y  e.  B  a  =  ( iota_ c  e.  C  ( c  .+  d
)  =  y ) )
5545, 54sylibr 212 . 2  |-  ( (
ph  /\  a  e.  C )  ->  E. x  e.  ( D  X.  B
) a  =  (
iota_ c  e.  C  ( c  .+  ( 1st `  x ) )  =  ( 2nd `  x
) ) )
564, 55wdomd 8008 1  |-  ( ph  ->  C  ~<_*  ( D  X.  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    u. cun 3474   <.cop 4033   class class class wbr 4447    X. cxp 4997   ` cfv 5588   iota_crio 6245  (class class class)co 6285   1stc1st 6783   2ndc2nd 6784    ~<_ cdom 7515    ~<_* cwdom 7984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-1st 6785  df-2nd 6786  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-wdom 7986
This theorem is referenced by:  isnumbasgrplem2  30884
  Copyright terms: Public domain W3C validator