MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Unicode version

Theorem unxpwdom 8011
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )

Proof of Theorem unxpwdom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 7519 . . . . 5  |-  Rel  ~<_
21brrelex2i 5040 . . . 4  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( B  u.  C )  e.  _V )
3 domeng 7527 . . . 4  |-  ( ( B  u.  C )  e.  _V  ->  (
( A  X.  A
)  ~<_  ( B  u.  C )  <->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) ) )
42, 3syl 16 . . 3  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( ( A  X.  A )  ~<_  ( B  u.  C )  <->  E. x ( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C )
) ) )
54ibi 241 . 2  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) )
6 simprl 755 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  x
)
7 indi 3744 . . . . . 6  |-  ( x  i^i  ( B  u.  C ) )  =  ( ( x  i^i 
B )  u.  (
x  i^i  C )
)
8 simprr 756 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  x  C_  ( B  u.  C )
)
9 df-ss 3490 . . . . . . 7  |-  ( x 
C_  ( B  u.  C )  <->  ( x  i^i  ( B  u.  C
) )  =  x )
108, 9sylib 196 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i  ( B  u.  C
) )  =  x )
117, 10syl5eqr 2522 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  =  x )
126, 11breqtrrd 4473 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  (
( x  i^i  B
)  u.  ( x  i^i  C ) ) )
13 unxpwdom2 8010 . . . 4  |-  ( ( A  X.  A ) 
~~  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  ->  ( A  ~<_*  ( x  i^i  B
)  \/  A  ~<_  ( x  i^i  C ) ) )
1412, 13syl 16 . . 3  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) ) )
15 ssun1 3667 . . . . . . . 8  |-  B  C_  ( B  u.  C
)
162adantr 465 . . . . . . . 8  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( B  u.  C )  e.  _V )
17 ssexg 4593 . . . . . . . 8  |-  ( ( B  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  B  e.  _V )
1815, 16, 17sylancr 663 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  B  e.  _V )
19 inss2 3719 . . . . . . 7  |-  ( x  i^i  B )  C_  B
20 ssdomg 7558 . . . . . . 7  |-  ( B  e.  _V  ->  (
( x  i^i  B
)  C_  B  ->  ( x  i^i  B )  ~<_  B ) )
2118, 19, 20mpisyl 18 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_  B )
22 domwdom 7996 . . . . . 6  |-  ( ( x  i^i  B )  ~<_  B  ->  ( x  i^i  B )  ~<_*  B )
2321, 22syl 16 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_*  B )
24 wdomtr 7997 . . . . . 6  |-  ( ( A  ~<_*  ( x  i^i  B
)  /\  ( x  i^i  B )  ~<_*  B )  ->  A  ~<_*  B )
2524expcom 435 . . . . 5  |-  ( ( x  i^i  B )  ~<_*  B  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
2623, 25syl 16 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
27 ssun2 3668 . . . . . . 7  |-  C  C_  ( B  u.  C
)
28 ssexg 4593 . . . . . . 7  |-  ( ( C  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  C  e.  _V )
2927, 16, 28sylancr 663 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  C  e.  _V )
30 inss2 3719 . . . . . 6  |-  ( x  i^i  C )  C_  C
31 ssdomg 7558 . . . . . 6  |-  ( C  e.  _V  ->  (
( x  i^i  C
)  C_  C  ->  ( x  i^i  C )  ~<_  C ) )
3229, 30, 31mpisyl 18 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
C )  ~<_  C )
33 domtr 7565 . . . . . 6  |-  ( ( A  ~<_  ( x  i^i 
C )  /\  (
x  i^i  C )  ~<_  C )  ->  A  ~<_  C )
3433expcom 435 . . . . 5  |-  ( ( x  i^i  C )  ~<_  C  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3532, 34syl 16 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3626, 35orim12d 836 . . 3  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( A  ~<_*  ( x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
) )
3714, 36mpd 15 . 2  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
)
385, 37exlimddv 1702 1  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   class class class wbr 4447    X. cxp 4997    ~~ cen 7510    ~<_ cdom 7511    ~<_* cwdom 7979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-1st 6781  df-2nd 6782  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-wdom 7981
This theorem is referenced by:  pwcdadom  8592
  Copyright terms: Public domain W3C validator