MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Unicode version

Theorem unxpdom 7728
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  u.  B
)  ~<_  ( A  X.  B ) )

Proof of Theorem unxpdom
Dummy variables  x  y  u  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 7524 . . . 4  |-  Rel  ~<
21brrelex2i 5041 . . 3  |-  ( 1o 
~<  A  ->  A  e. 
_V )
31brrelex2i 5041 . . 3  |-  ( 1o 
~<  B  ->  B  e. 
_V )
42, 3anim12i 566 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
5 breq2 4451 . . . . 5  |-  ( x  =  A  ->  ( 1o  ~<  x  <->  1o  ~<  A ) )
65anbi1d 704 . . . 4  |-  ( x  =  A  ->  (
( 1o  ~<  x  /\  1o  ~<  y )  <->  ( 1o  ~<  A  /\  1o  ~<  y ) ) )
7 uneq1 3651 . . . . 5  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
8 xpeq1 5013 . . . . 5  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
97, 8breq12d 4460 . . . 4  |-  ( x  =  A  ->  (
( x  u.  y
)  ~<_  ( x  X.  y )  <->  ( A  u.  y )  ~<_  ( A  X.  y ) ) )
106, 9imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( ( 1o  ~<  x  /\  1o  ~<  y
)  ->  ( x  u.  y )  ~<_  ( x  X.  y ) )  <-> 
( ( 1o  ~<  A  /\  1o  ~<  y
)  ->  ( A  u.  y )  ~<_  ( A  X.  y ) ) ) )
11 breq2 4451 . . . . 5  |-  ( y  =  B  ->  ( 1o  ~<  y  <->  1o  ~<  B ) )
1211anbi2d 703 . . . 4  |-  ( y  =  B  ->  (
( 1o  ~<  A  /\  1o  ~<  y )  <->  ( 1o  ~<  A  /\  1o  ~<  B ) ) )
13 uneq2 3652 . . . . 5  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
14 xpeq2 5014 . . . . 5  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
1513, 14breq12d 4460 . . . 4  |-  ( y  =  B  ->  (
( A  u.  y
)  ~<_  ( A  X.  y )  <->  ( A  u.  B )  ~<_  ( A  X.  B ) ) )
1612, 15imbi12d 320 . . 3  |-  ( y  =  B  ->  (
( ( 1o  ~<  A  /\  1o  ~<  y
)  ->  ( A  u.  y )  ~<_  ( A  X.  y ) )  <-> 
( ( 1o  ~<  A  /\  1o  ~<  B )  ->  ( A  u.  B )  ~<_  ( A  X.  B ) ) ) )
17 eqid 2467 . . . 4  |-  ( z  e.  ( x  u.  y )  |->  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )
)  =  ( z  e.  ( x  u.  y )  |->  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )
)
18 eqid 2467 . . . 4  |-  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )  =  if ( z  e.  x ,  <. z ,  if ( z  =  v ,  w ,  t ) >. ,  <. if ( z  =  w ,  u ,  v ) ,  z >.
)
1917, 18unxpdomlem3 7727 . . 3  |-  ( ( 1o  ~<  x  /\  1o  ~<  y )  -> 
( x  u.  y
)  ~<_  ( x  X.  y ) )
2010, 16, 19vtocl2g 3175 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( 1o  ~<  A  /\  1o  ~<  B )  ->  ( A  u.  B )  ~<_  ( A  X.  B ) ) )
214, 20mpcom 36 1  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  u.  B
)  ~<_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   ifcif 3939   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   1oc1o 7124    ~<_ cdom 7515    ~< csdm 7516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6686  df-1o 7131  df-2o 7132  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520
This theorem is referenced by:  unxpdom2  7729  sucxpdom  7730  cdaxpdom  8570
  Copyright terms: Public domain W3C validator