MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unundi Structured version   Visualization version   Unicode version

Theorem unundi 3586
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi  |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3568 . . 3  |-  ( A  u.  A )  =  A
21uneq1i 3575 . 2  |-  ( ( A  u.  A )  u.  ( B  u.  C ) )  =  ( A  u.  ( B  u.  C )
)
3 un4 3585 . 2  |-  ( ( A  u.  A )  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)
42, 3eqtr3i 2495 1  |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1452    u. cun 3388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-v 3033  df-un 3395
This theorem is referenced by:  dfif5  3888
  Copyright terms: Public domain W3C validator