MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unrab Structured version   Unicode version

Theorem unrab 3705
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
unrab  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  \/  ps ) }

Proof of Theorem unrab
StepHypRef Expression
1 df-rab 2801 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2801 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2uneq12i 3592 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  {
x  |  ( x  e.  A  /\  ps ) } )
4 df-rab 2801 . . 3  |-  { x  e.  A  |  ( ph  \/  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  \/  ps ) ) }
5 unab 3701 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps ) ) }
6 andi 862 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  \/  ps )
)  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps )
) )
76abbii 2582 . . . 4  |-  { x  |  ( x  e.  A  /\  ( ph  \/  ps ) ) }  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps ) ) }
85, 7eqtr4i 2481 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( x  e.  A  /\  ( ph  \/  ps ) ) }
94, 8eqtr4i 2481 . 2  |-  { x  e.  A  |  ( ph  \/  ps ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  A  /\  ps ) } )
103, 9eqtr4i 2481 1  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  \/  ps ) }
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1757   {cab 2435   {crab 2796    u. cun 3410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-rab 2801  df-v 3056  df-un 3417
This theorem is referenced by:  rabxm  3744  kmlem3  8408  hashbclem  12293  phiprmpw  13939  efgsfo  16326  dsmmacl  18261  rrxmvallem  21005  mumul  22621  ppiub  22645  lgsquadlem2  22796  hasheuni  26654  measvuni  26748  ddemeas  26772  aean  26780  subfacp1lem6  27193  lineunray  28298  cnambfre  28564  itg2addnclem2  28568  iblabsnclem  28579  orrabdioph  29244  numclwwlk3lem  30825  mndpsuppss  30908
  Copyright terms: Public domain W3C validator