HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unoplin Structured version   Unicode version

Theorem unoplin 26503
Description: A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unoplin  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)

Proof of Theorem unoplin
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 26499 . . 3  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )
2 f1of 5809 . . 3  |-  ( T : ~H -1-1-onto-> ~H  ->  T : ~H
--> ~H )
31, 2syl 16 . 2  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
4 simplll 757 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  T  e.  UniOp )
5 hvmulcl 25594 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
6 hvaddcl 25593 . . . . . . . . . . 11  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
75, 6sylan 471 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
87adantll 713 . . . . . . . . 9  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e. 
~H )
98adantr 465 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
10 simpr 461 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  w  e.  ~H )
11 unopadj 26502 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
( x  .h  y
)  +h  z )  e.  ~H  /\  w  e.  ~H )  ->  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z )  .ih  ( `' T `  w ) ) )
124, 9, 10, 11syl3anc 1223 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z
)  .ih  ( `' T `  w )
) )
13 simprl 755 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
1413ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  x  e.  CC )
15 simprr 756 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
1615ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  y  e.  ~H )
17 simplr 754 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  z  e.  ~H )
18 cnvunop 26501 . . . . . . . . . . . 12  |-  ( T  e.  UniOp  ->  `' T  e.  UniOp )
19 unopf1o 26499 . . . . . . . . . . . 12  |-  ( `' T  e.  UniOp  ->  `' T : ~H -1-1-onto-> ~H )
20 f1of 5809 . . . . . . . . . . . 12  |-  ( `' T : ~H -1-1-onto-> ~H  ->  `' T : ~H --> ~H )
2118, 19, 203syl 20 . . . . . . . . . . 11  |-  ( T  e.  UniOp  ->  `' T : ~H --> ~H )
2221ffvelrnda 6014 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
2322adantlr 714 . . . . . . . . 9  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
2423adantllr 718 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
25 hiassdi 25672 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  ( `' T `  w )  e.  ~H ) )  ->  (
( ( x  .h  y )  +h  z
)  .ih  ( `' T `  w )
)  =  ( ( x  x.  ( y 
.ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) ) )
2614, 16, 17, 24, 25syl22anc 1224 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  y )  +h  z )  .ih  ( `' T `  w ) )  =  ( ( x  x.  ( y 
.ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) ) )
273ffvelrnda 6014 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  ( T `  y )  e.  ~H )
2827adantrl 715 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  y )  e.  ~H )
2928ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  y )  e.  ~H )
303ffvelrnda 6014 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  z  e.  ~H )  ->  ( T `  z )  e.  ~H )
3130adantr 465 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
3231adantllr 718 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
33 hiassdi 25672 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( T `  y
)  e.  ~H )  /\  ( ( T `  z )  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) 
.ih  w )  =  ( ( x  x.  ( ( T `  y )  .ih  w
) )  +  ( ( T `  z
)  .ih  w )
) )
3414, 29, 32, 10, 33syl22anc 1224 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  =  ( ( x  x.  (
( T `  y
)  .ih  w )
)  +  ( ( T `  z ) 
.ih  w ) ) )
35 unopadj 26502 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  y
)  .ih  w )  =  ( y  .ih  ( `' T `  w ) ) )
36353expa 1191 . . . . . . . . . . . 12  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 y )  .ih  w )  =  ( y  .ih  ( `' T `  w ) ) )
3736oveq2d 6293 . . . . . . . . . . 11  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( `' T `  w ) ) ) )
3837adantlrl 719 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `
 y )  .ih  w ) )  =  ( x  x.  (
y  .ih  ( `' T `  w )
) ) )
3938adantlr 714 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( `' T `  w ) ) ) )
40 unopadj 26502 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  z  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  z
)  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
41403expa 1191 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
4241adantllr 718 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
4339, 42oveq12d 6295 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( ( T `
 y )  .ih  w ) )  +  ( ( T `  z )  .ih  w
) )  =  ( ( x  x.  (
y  .ih  ( `' T `  w )
) )  +  ( z  .ih  ( `' T `  w ) ) ) )
4434, 43eqtr2d 2504 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( y  .ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
4512, 26, 443eqtrd 2507 . . . . . 6  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
4645ralrimiva 2873 . . . . 5  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  A. w  e.  ~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
47 ffvelrn 6012 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
487, 47sylan2 474 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
4948anassrs 648 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
50 ffvelrn 6012 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
51 hvmulcl 25594 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( T `  y )  e.  ~H )  -> 
( x  .h  ( T `  y )
)  e.  ~H )
5250, 51sylan2 474 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( T : ~H --> ~H  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5352an12s 799 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5453adantr 465 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( x  .h  ( T `  y )
)  e.  ~H )
55 ffvelrn 6012 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
5655adantlr 714 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
57 hvaddcl 25593 . . . . . . . 8  |-  ( ( ( x  .h  ( T `  y )
)  e.  ~H  /\  ( T `  z )  e.  ~H )  -> 
( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
5854, 56, 57syl2anc 661 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
59 hial2eq 25687 . . . . . . 7  |-  ( ( ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H  /\  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
6049, 58, 59syl2anc 661 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
613, 60sylanl1 650 . . . . 5  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( A. w  e.  ~H  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
6246, 61mpbid 210 . . . 4  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( T `
 ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
) )
6362ralrimiva 2873 . . 3  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )
6463ralrimivva 2880 . 2  |-  ( T  e.  UniOp  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
65 ellnop 26441 . 2  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
663, 64, 65sylanbrc 664 1  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2809   `'ccnv 4993   -->wf 5577   -1-1-onto->wf1o 5580   ` cfv 5581  (class class class)co 6277   CCcc 9481    + caddc 9486    x. cmul 9488   ~Hchil 25500    +h cva 25501    .h csm 25502    .ih csp 25503   LinOpclo 25528   UniOpcuo 25530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-hilex 25580  ax-hfvadd 25581  ax-hvcom 25582  ax-hvass 25583  ax-hv0cl 25584  ax-hvaddid 25585  ax-hfvmul 25586  ax-hvmulid 25587  ax-hvdistr2 25590  ax-hvmul0 25591  ax-hfi 25660  ax-his1 25663  ax-his2 25664  ax-his3 25665  ax-his4 25666
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-map 7414  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-2 10585  df-cj 12884  df-re 12885  df-im 12886  df-hvsub 25552  df-lnop 26424  df-unop 26426
This theorem is referenced by:  unopadj2  26521  idlnop  26575  elunop2  26596  nmopun  26597  unopbd  26598
  Copyright terms: Public domain W3C validator