MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpid Structured version   Visualization version   Unicode version

Theorem unixpid 5371
Description: Field of a square Cartesian product. (Contributed by FL, 10-Oct-2009.)
Assertion
Ref Expression
unixpid  |-  U. U. ( A  X.  A
)  =  A

Proof of Theorem unixpid
StepHypRef Expression
1 xpeq1 4848 . . . 4  |-  ( A  =  (/)  ->  ( A  X.  A )  =  ( (/)  X.  A
) )
2 0xp 4915 . . . 4  |-  ( (/)  X.  A )  =  (/)
31, 2syl6eq 2501 . . 3  |-  ( A  =  (/)  ->  ( A  X.  A )  =  (/) )
4 unieq 4206 . . . . 5  |-  ( ( A  X.  A )  =  (/)  ->  U. ( A  X.  A )  = 
U. (/) )
54unieqd 4208 . . . 4  |-  ( ( A  X.  A )  =  (/)  ->  U. U. ( A  X.  A
)  =  U. U. (/) )
6 uni0 4225 . . . . . 6  |-  U. (/)  =  (/)
76unieqi 4207 . . . . 5  |-  U. U. (/)  =  U. (/)
87, 6eqtri 2473 . . . 4  |-  U. U. (/)  =  (/)
9 eqtr 2470 . . . . 5  |-  ( ( U. U. ( A  X.  A )  = 
U. U. (/)  /\  U. U. (/)  =  (/) )  ->  U. U. ( A  X.  A
)  =  (/) )
10 eqtr 2470 . . . . . . 7  |-  ( ( U. U. ( A  X.  A )  =  (/)  /\  (/)  =  A )  ->  U. U. ( A  X.  A )  =  A )
1110expcom 437 . . . . . 6  |-  ( (/)  =  A  ->  ( U. U. ( A  X.  A
)  =  (/)  ->  U. U. ( A  X.  A
)  =  A ) )
1211eqcoms 2459 . . . . 5  |-  ( A  =  (/)  ->  ( U. U. ( A  X.  A
)  =  (/)  ->  U. U. ( A  X.  A
)  =  A ) )
139, 12syl5com 31 . . . 4  |-  ( ( U. U. ( A  X.  A )  = 
U. U. (/)  /\  U. U. (/)  =  (/) )  ->  ( A  =  (/)  ->  U. U. ( A  X.  A
)  =  A ) )
145, 8, 13sylancl 668 . . 3  |-  ( ( A  X.  A )  =  (/)  ->  ( A  =  (/)  ->  U. U. ( A  X.  A
)  =  A ) )
153, 14mpcom 37 . 2  |-  ( A  =  (/)  ->  U. U. ( A  X.  A
)  =  A )
16 df-ne 2624 . . 3  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
17 xpnz 5256 . . . 4  |-  ( ( A  =/=  (/)  /\  A  =/=  (/) )  <->  ( A  X.  A )  =/=  (/) )
18 unixp 5369 . . . . 5  |-  ( ( A  X.  A )  =/=  (/)  ->  U. U. ( A  X.  A )  =  ( A  u.  A
) )
19 unidm 3577 . . . . 5  |-  ( A  u.  A )  =  A
2018, 19syl6eq 2501 . . . 4  |-  ( ( A  X.  A )  =/=  (/)  ->  U. U. ( A  X.  A )  =  A )
2117, 20sylbi 199 . . 3  |-  ( ( A  =/=  (/)  /\  A  =/=  (/) )  ->  U. U. ( A  X.  A
)  =  A )
2216, 16, 21sylancbr 672 . 2  |-  ( -.  A  =  (/)  ->  U. U. ( A  X.  A
)  =  A )
2315, 22pm2.61i 168 1  |-  U. U. ( A  X.  A
)  =  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    =/= wne 2622    u. cun 3402   (/)c0 3731   U.cuni 4198    X. cxp 4832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-xp 4840  df-rel 4841  df-cnv 4842  df-dm 4844  df-rn 4845
This theorem is referenced by:  psss  16460
  Copyright terms: Public domain W3C validator