MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniun Structured version   Unicode version

Theorem uniun 4264
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun  |-  U. ( A  u.  B )  =  ( U. A  u.  U. B )

Proof of Theorem uniun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1670 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  \/  (
x  e.  y  /\  y  e.  B )
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  \/  E. y
( x  e.  y  /\  y  e.  B
) ) )
2 elun 3645 . . . . . . 7  |-  ( y  e.  ( A  u.  B )  <->  ( y  e.  A  \/  y  e.  B ) )
32anbi2i 694 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  ( A  u.  B ) )  <->  ( x  e.  y  /\  (
y  e.  A  \/  y  e.  B )
) )
4 andi 865 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  e.  A  \/  y  e.  B
) )  <->  ( (
x  e.  y  /\  y  e.  A )  \/  ( x  e.  y  /\  y  e.  B
) ) )
53, 4bitri 249 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ( A  u.  B ) )  <->  ( (
x  e.  y  /\  y  e.  A )  \/  ( x  e.  y  /\  y  e.  B
) ) )
65exbii 1644 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  u.  B
) )  <->  E. y
( ( x  e.  y  /\  y  e.  A )  \/  (
x  e.  y  /\  y  e.  B )
) )
7 eluni 4248 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
8 eluni 4248 . . . . 5  |-  ( x  e.  U. B  <->  E. y
( x  e.  y  /\  y  e.  B
) )
97, 8orbi12i 521 . . . 4  |-  ( ( x  e.  U. A  \/  x  e.  U. B
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  \/  E. y
( x  e.  y  /\  y  e.  B
) ) )
101, 6, 93bitr4i 277 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  u.  B
) )  <->  ( x  e.  U. A  \/  x  e.  U. B ) )
11 eluni 4248 . . 3  |-  ( x  e.  U. ( A  u.  B )  <->  E. y
( x  e.  y  /\  y  e.  ( A  u.  B ) ) )
12 elun 3645 . . 3  |-  ( x  e.  ( U. A  u.  U. B )  <->  ( x  e.  U. A  \/  x  e.  U. B ) )
1310, 11, 123bitr4i 277 . 2  |-  ( x  e.  U. ( A  u.  B )  <->  x  e.  ( U. A  u.  U. B ) )
1413eqriv 2463 1  |-  U. ( A  u.  B )  =  ( U. A  u.  U. B )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    u. cun 3474   U.cuni 4245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-un 3481  df-uni 4246
This theorem is referenced by:  unidif0  4620  unisuc  4954  fvssunirn  5889  fvun  5938  onuninsuci  6660  tc2  8174  fin1a2lem10  8790  fin1a2lem12  8792  incexclem  13614  dprd2da  16905  dmdprdsplit2lem  16908  ordtuni  19497  cmpcld  19708  uncmp  19709  refssfne  19844  1stckgenlem  19881  filcon  20211  ufildr  20259  alexsubALTlem3  20376  cldsubg  20436  icccmplem2  21155  uniioombllem3  21821  sxbrsigalem0  27993  cvmscld  28469  mbfresfi  29914  topjoin  30013  fourierdlem80  31714
  Copyright terms: Public domain W3C validator