MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitnegcl Structured version   Unicode version

Theorem unitnegcl 16771
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 rnggrp 16648 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqid 2441 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
4 unitnegcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
53, 4unitcl 16749 . . . . . 6  |-  ( X  e.  U  ->  X  e.  ( Base `  R
) )
6 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
73, 6grpinvcl 15581 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
82, 5, 7syl2an 477 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
9 eqid 2441 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
103, 9, 6dvdsrneg 16744 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
118, 10syldan 470 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
123, 6grpinvinv 15591 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
132, 5, 12syl2an 477 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1411, 13breqtrd 4314 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
15 simpr 461 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
16 eqid 2441 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
17 eqid 2441 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
18 eqid 2441 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
194, 16, 9, 17, 18isunit 16747 . . . . 5  |-  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2015, 19sylib 196 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2120simpld 459 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
223, 9dvdsrtr 16742 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
231, 14, 21, 22syl3anc 1218 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
2417opprrng 16721 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
2524adantr 465 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
2617, 3opprbas 16719 . . . . . 6  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
2717, 6opprneg 16725 . . . . . 6  |-  N  =  ( invg `  (oppr `  R ) )
2826, 18, 27dvdsrneg 16744 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  R )
)  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( N `
 ( N `  X ) ) )
2925, 8, 28syl2anc 661 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
3029, 13breqtrd 4314 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
3120simprd 463 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
3226, 18dvdsrtr 16742 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
3325, 30, 31, 32syl3anc 1218 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
344, 16, 9, 17, 18isunit 16747 . 2  |-  ( ( N `  X )  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
3523, 33, 34sylanbrc 664 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4290   ` cfv 5416   Basecbs 14172   Grpcgrp 15408   invgcminusg 15409   1rcur 16601   Ringcrg 16643  opprcoppr 16712   ||rcdsr 16728  Unitcui 16729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-tpos 6743  df-recs 6830  df-rdg 6864  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-plusg 14249  df-mulr 14250  df-0g 14378  df-mnd 15413  df-grp 15543  df-minusg 15544  df-mgp 16590  df-ur 16602  df-rng 16645  df-oppr 16713  df-dvdsr 16731  df-unit 16732
This theorem is referenced by:  irredneg  16800  deg1invg  21576  invginvrid  30769  nzrneg1ne0  30777  lincresunit3lem3  31005  lincresunitlem1  31006
  Copyright terms: Public domain W3C validator