MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitnegcl Structured version   Unicode version

Theorem unitnegcl 17107
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 rnggrp 16984 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqid 2460 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
4 unitnegcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
53, 4unitcl 17085 . . . . . 6  |-  ( X  e.  U  ->  X  e.  ( Base `  R
) )
6 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
73, 6grpinvcl 15889 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
82, 5, 7syl2an 477 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
9 eqid 2460 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
103, 9, 6dvdsrneg 17080 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
118, 10syldan 470 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
123, 6grpinvinv 15899 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
132, 5, 12syl2an 477 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1411, 13breqtrd 4464 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
15 simpr 461 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
16 eqid 2460 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
17 eqid 2460 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
18 eqid 2460 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
194, 16, 9, 17, 18isunit 17083 . . . . 5  |-  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2015, 19sylib 196 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2120simpld 459 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
223, 9dvdsrtr 17078 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
231, 14, 21, 22syl3anc 1223 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
2417opprrng 17057 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
2524adantr 465 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
2617, 3opprbas 17055 . . . . . 6  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
2717, 6opprneg 17061 . . . . . 6  |-  N  =  ( invg `  (oppr `  R ) )
2826, 18, 27dvdsrneg 17080 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  R )
)  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( N `
 ( N `  X ) ) )
2925, 8, 28syl2anc 661 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
3029, 13breqtrd 4464 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
3120simprd 463 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
3226, 18dvdsrtr 17078 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
3325, 30, 31, 32syl3anc 1223 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
344, 16, 9, 17, 18isunit 17083 . 2  |-  ( ( N `  X )  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
3523, 33, 34sylanbrc 664 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4440   ` cfv 5579   Basecbs 14479   Grpcgrp 15716   invgcminusg 15717   1rcur 16936   Ringcrg 16979  opprcoppr 17048   ||rcdsr 17064  Unitcui 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-tpos 6945  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-mulr 14558  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-mgp 16925  df-ur 16937  df-rng 16981  df-oppr 17049  df-dvdsr 17067  df-unit 17068
This theorem is referenced by:  irredneg  17136  deg1invg  22235  invginvrid  31900  nzrneg1ne0  31908  lincresunit3lem3  32023  lincresunitlem1  32024
  Copyright terms: Public domain W3C validator