MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitmulclb Structured version   Unicode version

Theorem unitmulclb 17509
Description: Reversal of unitmulcl 17508 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
unitmulclb.1  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
unitmulclb  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )

Proof of Theorem unitmulclb
StepHypRef Expression
1 simp1 994 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  CRing )
2 simp2 995 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 996 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 unitmulclb.1 . . . . . . 7  |-  B  =  ( Base `  R
)
5 eqid 2454 . . . . . . 7  |-  ( ||r `  R
)  =  ( ||r `  R
)
6 unitmulcl.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
74, 5, 6dvdsrmul 17492 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X ( ||r `
 R ) ( Y  .x.  X ) )
82, 3, 7syl2anc 659 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( Y  .x.  X ) )
94, 6crngcom 17408 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y  .x.  X
) )
108, 9breqtrrd 4465 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X
( ||r `
 R ) ( X  .x.  Y ) )
11 unitmulcl.1 . . . . . 6  |-  U  =  (Unit `  R )
1211, 5dvdsunit 17507 . . . . 5  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  X  e.  U )
13123expia 1196 . . . 4  |-  ( ( R  e.  CRing  /\  X
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  X  e.  U ) )
141, 10, 13syl2anc 659 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
154, 5, 6dvdsrmul 17492 . . . . 5  |-  ( ( Y  e.  B  /\  X  e.  B )  ->  Y ( ||r `
 R ) ( X  .x.  Y ) )
163, 2, 15syl2anc 659 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y
( ||r `
 R ) ( X  .x.  Y ) )
1711, 5dvdsunit 17507 . . . . 5  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y )  /\  ( X  .x.  Y )  e.  U
)  ->  Y  e.  U )
18173expia 1196 . . . 4  |-  ( ( R  e.  CRing  /\  Y
( ||r `
 R ) ( X  .x.  Y ) )  ->  ( ( X  .x.  Y )  e.  U  ->  Y  e.  U ) )
191, 16, 18syl2anc 659 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  ->  Y  e.  U )
)
2014, 19jcad 531 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  -> 
( X  e.  U  /\  Y  e.  U
) ) )
21 crngring 17404 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Ring )
22213ad2ant1 1015 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2311, 6unitmulcl 17508 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
24233expib 1197 . . 3  |-  ( R  e.  Ring  ->  ( ( X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y
)  e.  U ) )
2522, 24syl 16 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  e.  U  /\  Y  e.  U
)  ->  ( X  .x.  Y )  e.  U
) )
2620, 25impbid 191 1  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  e.  U  <->  ( X  e.  U  /\  Y  e.  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Basecbs 14716   .rcmulr 14785   Ringcrg 17393   CRingccrg 17394   ||rcdsr 17482  Unitcui 17483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-tpos 6947  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-plusg 14797  df-mulr 14798  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-grp 16256  df-cmn 16999  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-oppr 17467  df-dvdsr 17485  df-unit 17486
This theorem is referenced by:  dchrelbas3  23711
  Copyright terms: Public domain W3C validator