MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitgrp Structured version   Unicode version

Theorem unitgrp 17187
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitgrp.2  |-  G  =  ( (mulGrp `  R
)s 
U )
Assertion
Ref Expression
unitgrp  |-  ( R  e.  Ring  ->  G  e. 
Grp )

Proof of Theorem unitgrp
Dummy variables  x  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitmulcl.1 . . . 4  |-  U  =  (Unit `  R )
2 unitgrp.2 . . . 4  |-  G  =  ( (mulGrp `  R
)s 
U )
31, 2unitgrpbas 17186 . . 3  |-  U  =  ( Base `  G
)
43a1i 11 . 2  |-  ( R  e.  Ring  ->  U  =  ( Base `  G
) )
5 fvex 5863 . . . 4  |-  ( Base `  G )  e.  _V
63, 5eqeltri 2525 . . 3  |-  U  e. 
_V
7 eqid 2441 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
8 eqid 2441 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
97, 8mgpplusg 17016 . . . 4  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
102, 9ressplusg 14613 . . 3  |-  ( U  e.  _V  ->  ( .r `  R )  =  ( +g  `  G
) )
116, 10mp1i 12 . 2  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  G
) )
121, 8unitmulcl 17184 . 2  |-  ( ( R  e.  Ring  /\  x  e.  U  /\  y  e.  U )  ->  (
x ( .r `  R ) y )  e.  U )
13 eqid 2441 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
1413, 1unitcl 17179 . . . 4  |-  ( x  e.  U  ->  x  e.  ( Base `  R
) )
1513, 1unitcl 17179 . . . 4  |-  ( y  e.  U  ->  y  e.  ( Base `  R
) )
1613, 1unitcl 17179 . . . 4  |-  ( z  e.  U  ->  z  e.  ( Base `  R
) )
1714, 15, 163anim123i 1180 . . 3  |-  ( ( x  e.  U  /\  y  e.  U  /\  z  e.  U )  ->  ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) )
1813, 8ringass 17086 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  R ) y ) ( .r `  R ) z )  =  ( x ( .r `  R ) ( y ( .r
`  R ) z ) ) )
1917, 18sylan2 474 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  U  /\  y  e.  U  /\  z  e.  U )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) z )  =  ( x ( .r
`  R ) ( y ( .r `  R ) z ) ) )
20 eqid 2441 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
211, 201unit 17178 . 2  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  U )
2213, 8, 20ringlidm 17093 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) x )  =  x )
2314, 22sylan2 474 . 2  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) x )  =  x )
24 simpr 461 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  U )
25 eqid 2441 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
26 eqid 2441 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
27 eqid 2441 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
281, 20, 25, 26, 27isunit 17177 . . . 4  |-  ( x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2924, 28sylib 196 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
3014adantl 466 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  ( Base `  R
) )
3113, 25, 8dvdsr2 17167 . . . . . 6  |-  ( x  e.  ( Base `  R
)  ->  ( x
( ||r `
 R ) ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) )
3230, 31syl 16 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
x ( ||r `
 R ) ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) )
3326, 13opprbas 17149 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
34 eqid 2441 . . . . . . 7  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
3533, 27, 34dvdsr2 17167 . . . . . 6  |-  ( x  e.  ( Base `  R
)  ->  ( x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
)  <->  E. m  e.  (
Base `  R )
( m ( .r
`  (oppr
`  R ) ) x )  =  ( 1r `  R ) ) )
3630, 35syl 16 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
)  <->  E. m  e.  (
Base `  R )
( m ( .r
`  (oppr
`  R ) ) x )  =  ( 1r `  R ) ) )
3732, 36anbi12d 710 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( x ( ||r `  R
) ( 1r `  R )  /\  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  <->  ( E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
)  /\  E. m  e.  ( Base `  R
) ( m ( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) ) ) )
38 reeanv 3009 . . . . 5  |-  ( E. y  e.  ( Base `  R ) E. m  e.  ( Base `  R
) ( ( y ( .r `  R
) x )  =  ( 1r `  R
)  /\  ( m
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )  <->  ( E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
)  /\  E. m  e.  ( Base `  R
) ( m ( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) ) )
39 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  m  e.  ( Base `  R
) )
4030ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  x  e.  ( Base `  R
) )
4113, 25, 8dvdsrmul 17168 . . . . . . . . . . . 12  |-  ( ( m  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  m
( ||r `
 R ) ( x ( .r `  R ) m ) )
4239, 40, 41syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  m
( ||r `
 R ) ( x ( .r `  R ) m ) )
43 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  R  e.  Ring )
44 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  y  e.  ( Base `  R
) )
4513, 8ringass 17086 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  (
y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
)  /\  m  e.  ( Base `  R )
) )  ->  (
( y ( .r
`  R ) x ) ( .r `  R ) m )  =  ( y ( .r `  R ) ( x ( .r
`  R ) m ) ) )
4643, 44, 40, 39, 45syl13anc 1229 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
( y ( .r
`  R ) x ) ( .r `  R ) m )  =  ( y ( .r `  R ) ( x ( .r
`  R ) m ) ) )
47 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
y ( .r `  R ) x )  =  ( 1r `  R ) )
4847oveq1d 6293 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
( y ( .r
`  R ) x ) ( .r `  R ) m )  =  ( ( 1r
`  R ) ( .r `  R ) m ) )
4913, 8, 26, 34opprmul 17146 . . . . . . . . . . . . . . 15  |-  ( m ( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) m )
50 simprrr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) )
5149, 50syl5eqr 2496 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
x ( .r `  R ) m )  =  ( 1r `  R ) )
5251oveq2d 6294 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
y ( .r `  R ) ( x ( .r `  R
) m ) )  =  ( y ( .r `  R ) ( 1r `  R
) ) )
5346, 48, 523eqtr3d 2490 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
( 1r `  R
) ( .r `  R ) m )  =  ( y ( .r `  R ) ( 1r `  R
) ) )
5413, 8, 20ringlidm 17093 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  m  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) m )  =  m )
5543, 39, 54syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
( 1r `  R
) ( .r `  R ) m )  =  m )
5613, 8, 20ringridm 17094 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
y ( .r `  R ) ( 1r
`  R ) )  =  y )
5743, 44, 56syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
y ( .r `  R ) ( 1r
`  R ) )  =  y )
5853, 55, 573eqtr3d 2490 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  m  =  y )
5942, 58, 513brtr3d 4463 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  y
( ||r `
 R ) ( 1r `  R ) )
6033, 27, 34dvdsrmul 17168 . . . . . . . . . . . 12  |-  ( ( y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  y
( ||r `
 (oppr
`  R ) ) ( x ( .r
`  (oppr
`  R ) ) y ) )
6144, 40, 60syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  y
( ||r `
 (oppr
`  R ) ) ( x ( .r
`  (oppr
`  R ) ) y ) )
6213, 8, 26, 34opprmul 17146 . . . . . . . . . . . 12  |-  ( x ( .r `  (oppr `  R
) ) y )  =  ( y ( .r `  R ) x )
6362, 47syl5eq 2494 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( 1r
`  R ) )
6461, 63breqtrd 4458 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
651, 20, 25, 26, 27isunit 17177 . . . . . . . . . 10  |-  ( y  e.  U  <->  ( y
( ||r `
 R ) ( 1r `  R )  /\  y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
6659, 64, 65sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  y  e.  U )
6766, 47jca 532 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  x  e.  U
)  /\  y  e.  ( Base `  R )
)  /\  ( m  e.  ( Base `  R
)  /\  ( (
y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) ) ) )  ->  (
y  e.  U  /\  ( y ( .r
`  R ) x )  =  ( 1r
`  R ) ) )
6867rexlimdvaa 2934 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( E. m  e.  ( Base `  R ) ( ( y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) )  ->  ( y  e.  U  /\  ( y ( .r `  R
) x )  =  ( 1r `  R
) ) ) )
6968expimpd 603 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( y  e.  (
Base `  R )  /\  E. m  e.  (
Base `  R )
( ( y ( .r `  R ) x )  =  ( 1r `  R )  /\  ( m ( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) ) )  ->  ( y  e.  U  /\  ( y ( .r `  R
) x )  =  ( 1r `  R
) ) ) )
7069reximdv2 2912 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  ( E. y  e.  ( Base `  R ) E. m  e.  ( Base `  R ) ( ( y ( .r `  R ) x )  =  ( 1r `  R )  /\  (
m ( .r `  (oppr `  R ) ) x )  =  ( 1r
`  R ) )  ->  E. y  e.  U  ( y ( .r
`  R ) x )  =  ( 1r
`  R ) ) )
7138, 70syl5bir 218 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R )  /\  E. m  e.  ( Base `  R
) ( m ( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )  ->  E. y  e.  U  ( y ( .r
`  R ) x )  =  ( 1r
`  R ) ) )
7237, 71sylbid 215 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( x ( ||r `  R
) ( 1r `  R )  /\  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  E. y  e.  U  ( y
( .r `  R
) x )  =  ( 1r `  R
) ) )
7329, 72mpd 15 . 2  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  E. y  e.  U  ( y
( .r `  R
) x )  =  ( 1r `  R
) )
744, 11, 12, 19, 21, 23, 73isgrpde 15945 1  |-  ( R  e.  Ring  ->  G  e. 
Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   E.wrex 2792   _Vcvv 3093   class class class wbr 4434   ` cfv 5575  (class class class)co 6278   Basecbs 14506   ↾s cress 14507   +g cplusg 14571   .rcmulr 14572   Grpcgrp 15924  mulGrpcmgp 17012   1rcur 17024   Ringcrg 17069  opprcoppr 17142   ||rcdsr 17158  Unitcui 17159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-tpos 6954  df-recs 7041  df-rdg 7075  df-er 7310  df-en 7516  df-dom 7517  df-sdom 7518  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-nn 10540  df-2 10597  df-3 10598  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-0g 14713  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-grp 15928  df-mgp 17013  df-ur 17025  df-ring 17071  df-oppr 17143  df-dvdsr 17161  df-unit 17162
This theorem is referenced by:  unitabl  17188  unitsubm  17190  unitinvcl  17194  unitinvinv  17195  unitlinv  17197  unitrinv  17198  isdrng2  17277  subrgugrp  17319  expghm  18399  expghmOLD  18400  invrvald  19048  nrginvrcn  21070  nrgtdrg  21071  dchrfi  23399  dchrghm  23400  dchrabs  23404  dchrptlem1  23408  dchrptlem2  23409  dchrptlem3  23410  dchrsum2  23412  rdivmuldivd  27651  dvrcan5  27653  rhmunitinv  27682  idomodle  31126  proot1mul  31129  proot1hash  31133  proot1ex  31134
  Copyright terms: Public domain W3C validator