Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisym1 Structured version   Unicode version

Theorem unisym1 29815
Description: A symmetry with  A..

See negsym1 29809 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)

Assertion
Ref Expression
unisym1  |-  ( A. x A. x F.  ->  A. x ph )

Proof of Theorem unisym1
StepHypRef Expression
1 falim 1393 . . 3  |-  ( F. 
->  A. x ph )
21sps 1814 . 2  |-  ( A. x F.  ->  A. x ph )
32sps 1814 1  |-  ( A. x A. x F.  ->  A. x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1377   F. wfal 1384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-tru 1382  df-fal 1385  df-ex 1597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator