MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss2 Structured version   Unicode version

Theorem uniss2 4245
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4338 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Distinct variable groups:    x, A    x, y, B
Allowed substitution hint:    A( y)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 4235 . . . . 5  |-  ( ( x  C_  y  /\  y  e.  B )  ->  x  C_  U. B )
21expcom 436 . . . 4  |-  ( y  e.  B  ->  (
x  C_  y  ->  x 
C_  U. B ) )
32rexlimiv 2909 . . 3  |-  ( E. y  e.  B  x 
C_  y  ->  x  C_ 
U. B )
43ralimi 2816 . 2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  A. x  e.  A  x  C_  U. B
)
5 unissb 4244 . 2  |-  ( U. A  C_  U. B  <->  A. x  e.  A  x  C_  U. B
)
64, 5sylibr 215 1  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1867   A.wral 2773   E.wrex 2774    C_ wss 3433   U.cuni 4213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ral 2778  df-rex 2779  df-v 3080  df-in 3440  df-ss 3447  df-uni 4214
This theorem is referenced by:  unidif  4246  coflim  8680
  Copyright terms: Public domain W3C validator