Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirep Structured version   Visualization version   Unicode version

Theorem unirep 32039
Description: Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypotheses
Ref Expression
unirep.1  |-  ( y  =  D  ->  ( ph 
<->  ps ) )
unirep.2  |-  ( y  =  D  ->  B  =  C )
unirep.3  |-  ( y  =  z  ->  ( ph 
<->  ch ) )
unirep.4  |-  ( y  =  z  ->  B  =  F )
unirep.5  |-  B  e. 
_V
Assertion
Ref Expression
unirep  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  ( iota x E. y  e.  A  ( ph  /\  x  =  B )
)  =  C )
Distinct variable groups:    x, A, y, z    x, B, z   
x, C, y    x, D, y    x, F, y    ph, x, z    ps, x, y    ch, x, y
Allowed substitution hints:    ph( y)    ps( z)    ch( z)    B( y)    C( z)    D( z)    F( z)

Proof of Theorem unirep
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqidd 2452 . . . . 5  |-  ( ps 
->  C  =  C
)
21ancli 554 . . . 4  |-  ( ps 
->  ( ps  /\  C  =  C ) )
3 unirep.1 . . . . . 6  |-  ( y  =  D  ->  ( ph 
<->  ps ) )
4 unirep.2 . . . . . . 7  |-  ( y  =  D  ->  B  =  C )
54eqeq2d 2461 . . . . . 6  |-  ( y  =  D  ->  ( C  =  B  <->  C  =  C ) )
63, 5anbi12d 717 . . . . 5  |-  ( y  =  D  ->  (
( ph  /\  C  =  B )  <->  ( ps  /\  C  =  C ) ) )
76rspcev 3150 . . . 4  |-  ( ( D  e.  A  /\  ( ps  /\  C  =  C ) )  ->  E. y  e.  A  ( ph  /\  C  =  B ) )
82, 7sylan2 477 . . 3  |-  ( ( D  e.  A  /\  ps )  ->  E. y  e.  A  ( ph  /\  C  =  B ) )
98adantl 468 . 2  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  E. y  e.  A  ( ph  /\  C  =  B ) )
10 nfcvd 2593 . . . . . 6  |-  ( D  e.  A  ->  F/_ y C )
1110, 4csbiegf 3387 . . . . 5  |-  ( D  e.  A  ->  [_ D  /  y ]_ B  =  C )
12 unirep.5 . . . . . 6  |-  B  e. 
_V
1312csbex 4538 . . . . 5  |-  [_ D  /  y ]_ B  e.  _V
1411, 13syl6eqelr 2538 . . . 4  |-  ( D  e.  A  ->  C  e.  _V )
1514ad2antrl 734 . . 3  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  C  e.  _V )
16 eqeq1 2455 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
x  =  B  <->  C  =  B ) )
1716anbi2d 710 . . . . . . . . . 10  |-  ( x  =  C  ->  (
( ph  /\  x  =  B )  <->  ( ph  /\  C  =  B ) ) )
1817rexbidv 2901 . . . . . . . . 9  |-  ( x  =  C  ->  ( E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ( ph  /\  C  =  B ) ) )
1918spcegv 3135 . . . . . . . 8  |-  ( C  e.  _V  ->  ( E. y  e.  A  ( ph  /\  C  =  B )  ->  E. x E. y  e.  A  ( ph  /\  x  =  B ) ) )
2014, 19syl 17 . . . . . . 7  |-  ( D  e.  A  ->  ( E. y  e.  A  ( ph  /\  C  =  B )  ->  E. x E. y  e.  A  ( ph  /\  x  =  B ) ) )
2120adantr 467 . . . . . 6  |-  ( ( D  e.  A  /\  ps )  ->  ( E. y  e.  A  (
ph  /\  C  =  B )  ->  E. x E. y  e.  A  ( ph  /\  x  =  B ) ) )
228, 21mpd 15 . . . . 5  |-  ( ( D  e.  A  /\  ps )  ->  E. x E. y  e.  A  ( ph  /\  x  =  B ) )
2322adantl 468 . . . 4  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  E. x E. y  e.  A  ( ph  /\  x  =  B ) )
24 r19.29 2925 . . . . . . . 8  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  E. y  e.  A  ( ph  /\  x  =  B ) )  ->  E. y  e.  A  ( A. z  e.  A  (
( ph  /\  ch )  ->  B  =  F )  /\  ( ph  /\  x  =  B )
) )
25 r19.29 2925 . . . . . . . . . . . 12  |-  ( ( A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  E. z  e.  A  ( (
( ph  /\  ch )  ->  B  =  F )  /\  ( ch  /\  w  =  F )
) )
26 an4 833 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =  B )  /\  ( ch  /\  w  =  F ) )  <->  ( ( ph  /\  ch )  /\  ( x  =  B  /\  w  =  F
) ) )
27 pm3.35 591 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ch )  /\  ( ( ph  /\ 
ch )  ->  B  =  F ) )  ->  B  =  F )
28 eqeq12 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  B  /\  w  =  F )  ->  ( x  =  w  <-> 
B  =  F ) )
2927, 28syl5ibrcom 226 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ch )  /\  ( ( ph  /\ 
ch )  ->  B  =  F ) )  -> 
( ( x  =  B  /\  w  =  F )  ->  x  =  w ) )
3029ancoms 455 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ch )  ->  B  =  F )  /\  ( ph  /\  ch ) )  ->  ( ( x  =  B  /\  w  =  F )  ->  x  =  w ) )
3130expimpd 608 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ch )  ->  B  =  F )  ->  ( (
( ph  /\  ch )  /\  ( x  =  B  /\  w  =  F ) )  ->  x  =  w ) )
3226, 31syl5bi 221 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ch )  ->  B  =  F )  ->  ( (
( ph  /\  x  =  B )  /\  ( ch  /\  w  =  F ) )  ->  x  =  w ) )
3332ancomsd 456 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ch )  ->  B  =  F )  ->  ( (
( ch  /\  w  =  F )  /\  ( ph  /\  x  =  B ) )  ->  x  =  w ) )
3433expdimp 439 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ch )  ->  B  =  F )  /\  ( ch  /\  w  =  F ) )  ->  (
( ph  /\  x  =  B )  ->  x  =  w ) )
3534rexlimivw 2876 . . . . . . . . . . . . 13  |-  ( E. z  e.  A  ( ( ( ph  /\  ch )  ->  B  =  F )  /\  ( ch  /\  w  =  F ) )  ->  (
( ph  /\  x  =  B )  ->  x  =  w ) )
3635imp 431 . . . . . . . . . . . 12  |-  ( ( E. z  e.  A  ( ( ( ph  /\ 
ch )  ->  B  =  F )  /\  ( ch  /\  w  =  F ) )  /\  ( ph  /\  x  =  B ) )  ->  x  =  w )
3725, 36sylan 474 . . . . . . . . . . 11  |-  ( ( ( A. z  e.  A  ( ( ph  /\ 
ch )  ->  B  =  F )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  /\  ( ph  /\  x  =  B ) )  ->  x  =  w )
3837an32s 813 . . . . . . . . . 10  |-  ( ( ( A. z  e.  A  ( ( ph  /\ 
ch )  ->  B  =  F )  /\  ( ph  /\  x  =  B ) )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  x  =  w )
3938ex 436 . . . . . . . . 9  |-  ( ( A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( ph  /\  x  =  B ) )  ->  ( E. z  e.  A  ( ch  /\  w  =  F )  ->  x  =  w ) )
4039rexlimivw 2876 . . . . . . . 8  |-  ( E. y  e.  A  ( A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( ph  /\  x  =  B ) )  ->  ( E. z  e.  A  ( ch  /\  w  =  F )  ->  x  =  w ) )
4124, 40syl 17 . . . . . . 7  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  E. y  e.  A  ( ph  /\  x  =  B ) )  ->  ( E. z  e.  A  ( ch  /\  w  =  F )  ->  x  =  w ) )
4241expimpd 608 . . . . . 6  |-  ( A. y  e.  A  A. z  e.  A  (
( ph  /\  ch )  ->  B  =  F )  ->  ( ( E. y  e.  A  (
ph  /\  x  =  B )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  x  =  w ) )
4342adantr 467 . . . . 5  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  (
( E. y  e.  A  ( ph  /\  x  =  B )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  x  =  w )
)
4443alrimivv 1774 . . . 4  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  A. x A. w ( ( E. y  e.  A  (
ph  /\  x  =  B )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  x  =  w ) )
45 eqeq1 2455 . . . . . . . 8  |-  ( x  =  w  ->  (
x  =  B  <->  w  =  B ) )
4645anbi2d 710 . . . . . . 7  |-  ( x  =  w  ->  (
( ph  /\  x  =  B )  <->  ( ph  /\  w  =  B ) ) )
4746rexbidv 2901 . . . . . 6  |-  ( x  =  w  ->  ( E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ( ph  /\  w  =  B ) ) )
48 unirep.3 . . . . . . . 8  |-  ( y  =  z  ->  ( ph 
<->  ch ) )
49 unirep.4 . . . . . . . . 9  |-  ( y  =  z  ->  B  =  F )
5049eqeq2d 2461 . . . . . . . 8  |-  ( y  =  z  ->  (
w  =  B  <->  w  =  F ) )
5148, 50anbi12d 717 . . . . . . 7  |-  ( y  =  z  ->  (
( ph  /\  w  =  B )  <->  ( ch  /\  w  =  F ) ) )
5251cbvrexv 3020 . . . . . 6  |-  ( E. y  e.  A  (
ph  /\  w  =  B )  <->  E. z  e.  A  ( ch  /\  w  =  F ) )
5347, 52syl6bb 265 . . . . 5  |-  ( x  =  w  ->  ( E. y  e.  A  ( ph  /\  x  =  B )  <->  E. z  e.  A  ( ch  /\  w  =  F ) ) )
5453eu4 2347 . . . 4  |-  ( E! x E. y  e.  A  ( ph  /\  x  =  B )  <->  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  /\  A. x A. w ( ( E. y  e.  A  (
ph  /\  x  =  B )  /\  E. z  e.  A  ( ch  /\  w  =  F ) )  ->  x  =  w ) ) )
5523, 44, 54sylanbrc 670 . . 3  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  E! x E. y  e.  A  ( ph  /\  x  =  B ) )
5618iota2 5572 . . 3  |-  ( ( C  e.  _V  /\  E! x E. y  e.  A  ( ph  /\  x  =  B )
)  ->  ( E. y  e.  A  ( ph  /\  C  =  B )  <->  ( iota x E. y  e.  A  ( ph  /\  x  =  B ) )  =  C ) )
5715, 55, 56syl2anc 667 . 2  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  ( E. y  e.  A  ( ph  /\  C  =  B )  <->  ( iota x E. y  e.  A  ( ph  /\  x  =  B ) )  =  C ) )
589, 57mpbid 214 1  |-  ( ( A. y  e.  A  A. z  e.  A  ( ( ph  /\  ch )  ->  B  =  F )  /\  ( D  e.  A  /\  ps ) )  ->  ( iota x E. y  e.  A  ( ph  /\  x  =  B )
)  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1442    = wceq 1444   E.wex 1663    e. wcel 1887   E!weu 2299   A.wral 2737   E.wrex 2738   _Vcvv 3045   [_csb 3363   iotacio 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-nul 4534
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-sn 3969  df-pr 3971  df-uni 4199  df-iota 5546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator