Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Unicode version

Theorem unipwrVD 33365
 Description: Virtual deduction proof of unipwr 33366. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD

Proof of Theorem unipwrVD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3098 . . . . 5
21snid 4042 . . . 4
3 idn1 33084 . . . . 5
4 snelpwi 4682 . . . . 5
53, 4e1a 33146 . . . 4
6 elunii 4239 . . . 4
72, 5, 6e01an 33211 . . 3
87in1 33081 . 2
98ssriv 3493 1
 Colors of variables: wff setvar class Syntax hints:   wcel 1804   wss 3461  cpw 3997  csn 4014  cuni 4234 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-pw 3999  df-sn 4015  df-pr 4017  df-uni 4235  df-vd1 33080 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator