Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Unicode version

Theorem unipreima 25896
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima  |-  ( Fun 
F  ->  ( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem unipreima
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funfn 5444 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 r19.42v 2873 . . . . . . 7  |-  ( E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y
)  e.  x )  <-> 
( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
) )
32bicomi 202 . . . . . 6  |-  ( ( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x )  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x ) )
43a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
)  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
5 eluni2 4092 . . . . . . 7  |-  ( ( F `  y )  e.  U. A  <->  E. x  e.  A  ( F `  y )  e.  x
)
65anbi2i 689 . . . . . 6  |-  ( ( y  e.  dom  F  /\  ( F `  y
)  e.  U. A
)  <->  ( y  e. 
dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
) )
76a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A )  <->  ( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x ) ) )
8 elpreima 5820 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " x )  <-> 
( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
98rexbidv 2734 . . . . 5  |-  ( F  Fn  dom  F  -> 
( E. x  e.  A  y  e.  ( `' F " x )  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
104, 7, 93bitr4d 285 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A )  <->  E. x  e.  A  y  e.  ( `' F " x ) ) )
11 elpreima 5820 . . . 4  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " U. A
)  <->  ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A ) ) )
12 eliun 4172 . . . . 5  |-  ( y  e.  U_ x  e.  A  ( `' F " x )  <->  E. x  e.  A  y  e.  ( `' F " x ) )
1312a1i 11 . . . 4  |-  ( F  Fn  dom  F  -> 
( y  e.  U_ x  e.  A  ( `' F " x )  <->  E. x  e.  A  y  e.  ( `' F " x ) ) )
1410, 11, 133bitr4d 285 . . 3  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " U. A
)  <->  y  e.  U_ x  e.  A  ( `' F " x ) ) )
1514eqrdv 2439 . 2  |-  ( F  Fn  dom  F  -> 
( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
161, 15sylbi 195 1  |-  ( Fun 
F  ->  ( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   E.wrex 2714   U.cuni 4088   U_ciun 4168   `'ccnv 4835   dom cdm 4836   "cima 4839   Fun wfun 5409    Fn wfn 5410   ` cfv 5415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423
This theorem is referenced by:  imambfm  26613  dstrvprob  26784
  Copyright terms: Public domain W3C validator