MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipr Structured version   Unicode version

Theorem unipr 4176
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
Hypotheses
Ref Expression
unipr.1  |-  A  e. 
_V
unipr.2  |-  B  e. 
_V
Assertion
Ref Expression
unipr  |-  U. { A ,  B }  =  ( A  u.  B )

Proof of Theorem unipr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1701 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
)  <->  ( E. y
( x  e.  y  /\  y  =  A )  \/  E. y
( x  e.  y  /\  y  =  B ) ) )
2 vex 3037 . . . . . . . 8  |-  y  e. 
_V
32elpr 3962 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43anbi2i 692 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( x  e.  y  /\  (
y  =  A  \/  y  =  B )
) )
5 andi 865 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  =  A  \/  y  =  B ) )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
64, 5bitri 249 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
76exbii 1675 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
{ A ,  B } )  <->  E. y
( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
) )
8 unipr.1 . . . . . . 7  |-  A  e. 
_V
98clel3 3163 . . . . . 6  |-  ( x  e.  A  <->  E. y
( y  =  A  /\  x  e.  y ) )
10 exancom 1679 . . . . . 6  |-  ( E. y ( y  =  A  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  A ) )
119, 10bitri 249 . . . . 5  |-  ( x  e.  A  <->  E. y
( x  e.  y  /\  y  =  A ) )
12 unipr.2 . . . . . . 7  |-  B  e. 
_V
1312clel3 3163 . . . . . 6  |-  ( x  e.  B  <->  E. y
( y  =  B  /\  x  e.  y ) )
14 exancom 1679 . . . . . 6  |-  ( E. y ( y  =  B  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  B ) )
1513, 14bitri 249 . . . . 5  |-  ( x  e.  B  <->  E. y
( x  e.  y  /\  y  =  B ) )
1611, 15orbi12i 519 . . . 4  |-  ( ( x  e.  A  \/  x  e.  B )  <->  ( E. y ( x  e.  y  /\  y  =  A )  \/  E. y ( x  e.  y  /\  y  =  B ) ) )
171, 7, 163bitr4ri 278 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) )
1817abbii 2516 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
19 df-un 3394 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
20 df-uni 4164 . 2  |-  U. { A ,  B }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
2118, 19, 203eqtr4ri 2422 1  |-  U. { A ,  B }  =  ( A  u.  B )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 366    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   {cab 2367   _Vcvv 3034    u. cun 3387   {cpr 3946   U.cuni 4163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-v 3036  df-un 3394  df-sn 3945  df-pr 3947  df-uni 4164
This theorem is referenced by:  uniprg  4177  unisn  4178  uniintsn  4237  uniop  4664  unex  6497  rankxplim  8210  mrcun  15029  indistps  19597  indistps2  19598  leordtval2  19799  ex-uni  25268  fouriersw  32180
  Copyright terms: Public domain W3C validator