Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopn Structured version   Visualization version   Unicode version

Theorem uniopn 20004
 Description: The union of a subset of a topology is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn

Proof of Theorem uniopn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 20002 . . . . 5
21ibi 249 . . . 4
32simpld 466 . . 3
4 elpw2g 4564 . . . . . . . 8
54biimpar 493 . . . . . . 7
6 sseq1 3439 . . . . . . . . 9
7 unieq 4198 . . . . . . . . . 10
87eleq1d 2533 . . . . . . . . 9
96, 8imbi12d 327 . . . . . . . 8
109spcgv 3120 . . . . . . 7
115, 10syl 17 . . . . . 6
1211com23 80 . . . . 5
1312ex 441 . . . 4
1413pm2.43d 49 . . 3
153, 14mpid 41 . 2
1615imp 436 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376  wal 1450   wceq 1452   wcel 1904  wral 2756   cin 3389   wss 3390  cpw 3942  cuni 4190  ctop 19994 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033  df-in 3397  df-ss 3404  df-pw 3944  df-uni 4191  df-top 19998 This theorem is referenced by:  iunopn  20005  unopn  20010  0opn  20011  topopn  20013  tgtop  20066  ntropn  20141  toponmre  20186  neips  20206  txcmplem1  20733  unimopn  21589  metrest  21617  locfinreflem  28741  cvmscld  30068  mblfinlem3  32043  mblfinlem4  32044  ismblfin  32045  cnopn  37436
 Copyright terms: Public domain W3C validator