Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopel Structured version   Unicode version

Theorem uniopel 4760
 Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1
opthw.2
Assertion
Ref Expression
uniopel

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4
2 opthw.2 . . . 4
31, 2uniop 4759 . . 3
41, 2opi2 4724 . . 3
53, 4eqeltri 2541 . 2
6 elssuni 4281 . . 3
76sseld 3498 . 2
85, 7mpi 17 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wcel 1819  cvv 3109  cpr 4034  cop 4038  cuni 4251 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rex 2813  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252 This theorem is referenced by:  dmrnssfld  5271  unielrel  5538
 Copyright terms: Public domain W3C validator