MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Structured version   Unicode version

Theorem uniioovol 21861
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 21837.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
uniioovol  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    S( x)

Proof of Theorem uniioovol
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniioombl.1 . . 3  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ssid 3508 . . 3  |-  U. ran  ( (,)  o.  F ) 
C_  U. ran  ( (,) 
o.  F )
3 uniioombl.3 . . . 4  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
43ovollb 21763 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U. ran  ( (,)  o.  F
)  C_  U. ran  ( (,)  o.  F ) )  ->  ( vol* `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )
)
51, 2, 4sylancl 662 . 2  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
61adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
7 elfznn 11723 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... n )  ->  x  e.  NN )
8 eqid 2443 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
98ovolfsval 21755 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
106, 7, 9syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
11 fvco3 5935 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
126, 7, 11syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
13 inss2 3704 . . . . . . . . . . . . . . . . . 18  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
14 ffvelrn 6014 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
156, 7, 14syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1613, 15sseldi 3487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  ( RR  X.  RR ) )
17 1st2nd2 6822 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  x )  e.  ( RR  X.  RR )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  =  <. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1918fveq2d 5860 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( (,) `  <. ( 1st `  ( F `
 x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
20 df-ov 6284 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
2119, 20syl6eqr 2502 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
2212, 21eqtrd 2484 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( ( 1st `  ( F `  x
) ) (,) ( 2nd `  ( F `  x ) ) ) )
23 ioombl 21848 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  e.  dom  vol
2422, 23syl6eqel 2539 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  e.  dom  vol )
25 mblvol 21814 . . . . . . . . . . . 12  |-  ( ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  (
( (,)  o.  F
) `  x )
) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( vol* `  ( ( (,)  o.  F ) `  x
) ) )
2722fveq2d 5860 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,)  o.  F ) `
 x ) )  =  ( vol* `  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) ) )
28 ovolfcl 21751 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
296, 7, 28syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
30 ovolioo 21851 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) )  ->  ( vol* `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3129, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3226, 27, 313eqtrd 2488 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3310, 32eqtr4d 2487 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( vol `  (
( (,)  o.  F
) `  x )
) )
34 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
35 nnuz 11125 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2541 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
3729simp2d 1010 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 2nd `  ( F `  x ) )  e.  RR )
3829simp1d 1009 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 1st `  ( F `  x ) )  e.  RR )
3937, 38resubcld 9993 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) )  e.  RR )
4032, 39eqeltrd 2531 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  RR )
4140recnd 9625 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  CC )
4233, 36, 41fsumser 13531 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  sum_ x  e.  ( 1 ... n
) ( vol `  (
( (,)  o.  F
) `  x )
)  =  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  n
) )
433fveq1i 5857 . . . . . . . 8  |-  ( S `
 n )  =  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  n )
4442, 43syl6reqr 2503 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  = 
sum_ x  e.  (
1 ... n ) ( vol `  ( ( (,)  o.  F ) `
 x ) ) )
45 fzfid 12062 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ... n )  e. 
Fin )
4624, 40jca 532 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR ) )
4746ralrimiva 2857 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( ( (,)  o.  F ) `
 x )  e. 
dom  vol  /\  ( vol `  ( ( (,)  o.  F ) `  x
) )  e.  RR ) )
487ssriv 3493 . . . . . . . . 9  |-  ( 1 ... n )  C_  NN
49 uniioombl.2 . . . . . . . . . . 11  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
501, 11sylan 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( (,) `  ( F `  x )
) )
5150disjeq2dv 4412 . . . . . . . . . . 11  |-  ( ph  ->  (Disj  x  e.  NN  ( ( (,)  o.  F ) `  x
)  <-> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) ) )
5249, 51mpbird 232 . . . . . . . . . 10  |-  ( ph  -> Disj  x  e.  NN  (
( (,)  o.  F
) `  x )
)
5352adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  NN  ( ( (,)  o.  F ) `  x
) )
54 disjss1 4413 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  (Disj  x  e.  NN  ( ( (,) 
o.  F ) `  x )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
5548, 53, 54mpsyl 63 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )
56 volfiniun 21830 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR )  /\ Disj  x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
)  ->  ( vol ` 
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5745, 47, 55, 56syl3anc 1229 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5824ralrimiva 2857 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
59 finiunmbl 21827 . . . . . . . . 9  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )  ->  U_ x  e.  (
1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )
6045, 58, 59syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
61 mblvol 21814 . . . . . . . 8  |-  ( U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6260, 61syl 16 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6344, 57, 623eqtr2d 2490 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  =  ( vol* `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
) )
64 iunss1 4327 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
6548, 64mp1i 12 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
66 ioof 11631 . . . . . . . . . . 11  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
67 rexpssxrxp 9641 . . . . . . . . . . . . 13  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
6813, 67sstri 3498 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
69 fss 5729 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
701, 68, 69sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
71 fco 5731 . . . . . . . . . . 11  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
7266, 70, 71sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
7372adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( (,) 
o.  F ) : NN --> ~P RR )
74 ffn 5721 . . . . . . . . 9  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ( (,)  o.  F
)  Fn  NN )
75 fniunfv 6144 . . . . . . . . 9  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7673, 74, 753syl 20 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7765, 76sseqtrd 3525 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U. ran  ( (,)  o.  F ) )
78 frn 5727 . . . . . . . . . 10  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ran  ( (,)  o.  F )  C_  ~P RR )
7972, 78syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  ( (,)  o.  F )  C_  ~P RR )
80 sspwuni 4401 . . . . . . . . 9  |-  ( ran  ( (,)  o.  F
)  C_  ~P RR  <->  U.
ran  ( (,)  o.  F )  C_  RR )
8179, 80sylib 196 . . . . . . . 8  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  RR )
8281adantr 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U. ran  ( (,)  o.  F ) 
C_  RR )
83 ovolss 21769 . . . . . . 7  |-  ( (
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
)  C_  U. ran  ( (,)  o.  F )  /\  U.
ran  ( (,)  o.  F )  C_  RR )  ->  ( vol* `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
8477, 82, 83syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) )
8563, 84eqbrtrd 4457 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) )
8685ralrimiva 2857 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) ) )
878, 3ovolsf 21757 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) +oo ) )
881, 87syl 16 . . . . 5  |-  ( ph  ->  S : NN --> ( 0 [,) +oo ) )
89 ffn 5721 . . . . 5  |-  ( S : NN --> ( 0 [,) +oo )  ->  S  Fn  NN )
90 breq1 4440 . . . . . 6  |-  ( y  =  ( S `  n )  ->  (
y  <_  ( vol* `  U. ran  ( (,)  o.  F ) )  <-> 
( S `  n
)  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
9190ralrn 6019 . . . . 5  |-  ( S  Fn  NN  ->  ( A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) ) ) )
9288, 89, 913syl 20 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F
) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
9386, 92mpbird 232 . . 3  |-  ( ph  ->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
94 frn 5727 . . . . . 6  |-  ( S : NN --> ( 0 [,) +oo )  ->  ran  S  C_  ( 0 [,) +oo ) )
951, 87, 943syl 20 . . . . 5  |-  ( ph  ->  ran  S  C_  (
0 [,) +oo )
)
96 icossxr 11618 . . . . 5  |-  ( 0 [,) +oo )  C_  RR*
9795, 96syl6ss 3501 . . . 4  |-  ( ph  ->  ran  S  C_  RR* )
98 ovolcl 21762 . . . . 5  |-  ( U. ran  ( (,)  o.  F
)  C_  RR  ->  ( vol* `  U. ran  ( (,)  o.  F
) )  e.  RR* )
9981, 98syl 16 . . . 4  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  e. 
RR* )
100 supxrleub 11527 . . . 4  |-  ( ( ran  S  C_  RR*  /\  ( vol* `  U. ran  ( (,)  o.  F ) )  e.  RR* )  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
10197, 99, 100syl2anc 661 . . 3  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
10293, 101mpbird 232 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
103 supxrcl 11515 . . . 4  |-  ( ran 
S  C_  RR*  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
10497, 103syl 16 . . 3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
105 xrletri3 11367 . . 3  |-  ( ( ( vol* `  U. ran  ( (,)  o.  F ) )  e. 
RR*  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR* )  ->  (
( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )  <->  ( ( vol* `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) ) ) )
10699, 104, 105syl2anc 661 . 2  |-  ( ph  ->  ( ( vol* `  U. ran  ( (,) 
o.  F ) )  =  sup ( ran 
S ,  RR* ,  <  )  <-> 
( ( vol* `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) ) )
1075, 102, 106mpbir2and 922 1  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793    i^i cin 3460    C_ wss 3461   ~Pcpw 3997   <.cop 4020   U.cuni 4234   U_ciun 4315  Disj wdisj 4407   class class class wbr 4437    X. cxp 4987   dom cdm 4989   ran crn 4990    o. ccom 4993    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281   1stc1st 6783   2ndc2nd 6784   Fincfn 7518   supcsup 7902   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498   +oocpnf 9628   RR*cxr 9630    < clt 9631    <_ cle 9632    - cmin 9810   NNcn 10542   ZZ>=cuz 11090   (,)cioo 11538   [,)cico 11540   ...cfz 11681    seqcseq 12086   abscabs 13046   sum_csu 13487   vol*covol 21747   volcvol 21748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-rlim 13291  df-sum 13488  df-rest 14697  df-topgen 14718  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-top 19272  df-bases 19274  df-topon 19275  df-cmp 19760  df-ovol 21749  df-vol 21750
This theorem is referenced by:  uniiccvol  21862  uniioombllem2  21865
  Copyright terms: Public domain W3C validator