MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Structured version   Unicode version

Theorem uniioovol 21018
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 20994.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
uniioovol  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    S( x)

Proof of Theorem uniioovol
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniioombl.1 . . 3  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ssid 3372 . . 3  |-  U. ran  ( (,)  o.  F ) 
C_  U. ran  ( (,) 
o.  F )
3 uniioombl.3 . . . 4  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
43ovollb 20921 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U. ran  ( (,)  o.  F
)  C_  U. ran  ( (,)  o.  F ) )  ->  ( vol* `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )
)
51, 2, 4sylancl 657 . 2  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
61adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
7 elfznn 11474 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... n )  ->  x  e.  NN )
8 eqid 2441 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
98ovolfsval 20913 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
106, 7, 9syl2an 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
11 fvco3 5765 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
126, 7, 11syl2an 474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
13 inss2 3568 . . . . . . . . . . . . . . . . . 18  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
14 ffvelrn 5838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
156, 7, 14syl2an 474 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1613, 15sseldi 3351 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  ( RR  X.  RR ) )
17 1st2nd2 6612 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  x )  e.  ( RR  X.  RR )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  =  <. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1918fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( (,) `  <. ( 1st `  ( F `
 x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
20 df-ov 6093 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
2119, 20syl6eqr 2491 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
2212, 21eqtrd 2473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( ( 1st `  ( F `  x
) ) (,) ( 2nd `  ( F `  x ) ) ) )
23 ioombl 21005 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  e.  dom  vol
2422, 23syl6eqel 2529 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  e.  dom  vol )
25 mblvol 20972 . . . . . . . . . . . 12  |-  ( ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  (
( (,)  o.  F
) `  x )
) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( vol* `  ( ( (,)  o.  F ) `  x
) ) )
2722fveq2d 5692 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,)  o.  F ) `
 x ) )  =  ( vol* `  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) ) )
28 ovolfcl 20909 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
296, 7, 28syl2an 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
30 ovolioo 21008 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) )  ->  ( vol* `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3129, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3226, 27, 313eqtrd 2477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3310, 32eqtr4d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( vol `  (
( (,)  o.  F
) `  x )
) )
34 simpr 458 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
35 nnuz 10892 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2531 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
3729simp2d 996 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 2nd `  ( F `  x ) )  e.  RR )
3829simp1d 995 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 1st `  ( F `  x ) )  e.  RR )
3937, 38resubcld 9772 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) )  e.  RR )
4032, 39eqeltrd 2515 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  RR )
4140recnd 9408 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  CC )
4233, 36, 41fsumser 13203 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  sum_ x  e.  ( 1 ... n
) ( vol `  (
( (,)  o.  F
) `  x )
)  =  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  n
) )
433fveq1i 5689 . . . . . . . 8  |-  ( S `
 n )  =  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  n )
4442, 43syl6reqr 2492 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  = 
sum_ x  e.  (
1 ... n ) ( vol `  ( ( (,)  o.  F ) `
 x ) ) )
45 fzfid 11791 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ... n )  e. 
Fin )
4624, 40jca 529 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR ) )
4746ralrimiva 2797 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( ( (,)  o.  F ) `
 x )  e. 
dom  vol  /\  ( vol `  ( ( (,)  o.  F ) `  x
) )  e.  RR ) )
487ssriv 3357 . . . . . . . . 9  |-  ( 1 ... n )  C_  NN
49 uniioombl.2 . . . . . . . . . . 11  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
501, 11sylan 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( (,) `  ( F `  x )
) )
5150disjeq2dv 4264 . . . . . . . . . . 11  |-  ( ph  ->  (Disj  x  e.  NN  ( ( (,)  o.  F ) `  x
)  <-> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) ) )
5249, 51mpbird 232 . . . . . . . . . 10  |-  ( ph  -> Disj  x  e.  NN  (
( (,)  o.  F
) `  x )
)
5352adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  NN  ( ( (,)  o.  F ) `  x
) )
54 disjss1 4265 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  (Disj  x  e.  NN  ( ( (,) 
o.  F ) `  x )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
5548, 53, 54mpsyl 63 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )
56 volfiniun 20987 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR )  /\ Disj  x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
)  ->  ( vol ` 
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5745, 47, 55, 56syl3anc 1213 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5824ralrimiva 2797 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
59 finiunmbl 20984 . . . . . . . . 9  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )  ->  U_ x  e.  (
1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )
6045, 58, 59syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
61 mblvol 20972 . . . . . . . 8  |-  ( U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6260, 61syl 16 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6344, 57, 623eqtr2d 2479 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  =  ( vol* `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
) )
64 iunss1 4179 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
6548, 64mp1i 12 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
66 ioof 11383 . . . . . . . . . . 11  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
67 rexpssxrxp 9424 . . . . . . . . . . . . 13  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
6813, 67sstri 3362 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
69 fss 5564 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
701, 68, 69sylancl 657 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
71 fco 5565 . . . . . . . . . . 11  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
7266, 70, 71sylancr 658 . . . . . . . . . 10  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
7372adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( (,) 
o.  F ) : NN --> ~P RR )
74 ffn 5556 . . . . . . . . 9  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ( (,)  o.  F
)  Fn  NN )
75 fniunfv 5961 . . . . . . . . 9  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7673, 74, 753syl 20 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7765, 76sseqtrd 3389 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U. ran  ( (,)  o.  F ) )
78 frn 5562 . . . . . . . . . 10  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ran  ( (,)  o.  F )  C_  ~P RR )
7972, 78syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  ( (,)  o.  F )  C_  ~P RR )
80 sspwuni 4253 . . . . . . . . 9  |-  ( ran  ( (,)  o.  F
)  C_  ~P RR  <->  U.
ran  ( (,)  o.  F )  C_  RR )
8179, 80sylib 196 . . . . . . . 8  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  RR )
8281adantr 462 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U. ran  ( (,)  o.  F ) 
C_  RR )
83 ovolss 20927 . . . . . . 7  |-  ( (
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
)  C_  U. ran  ( (,)  o.  F )  /\  U.
ran  ( (,)  o.  F )  C_  RR )  ->  ( vol* `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
8477, 82, 83syl2anc 656 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) )
8563, 84eqbrtrd 4309 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) )
8685ralrimiva 2797 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) ) )
878, 3ovolsf 20915 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) +oo ) )
881, 87syl 16 . . . . 5  |-  ( ph  ->  S : NN --> ( 0 [,) +oo ) )
89 ffn 5556 . . . . 5  |-  ( S : NN --> ( 0 [,) +oo )  ->  S  Fn  NN )
90 breq1 4292 . . . . . 6  |-  ( y  =  ( S `  n )  ->  (
y  <_  ( vol* `  U. ran  ( (,)  o.  F ) )  <-> 
( S `  n
)  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
9190ralrn 5843 . . . . 5  |-  ( S  Fn  NN  ->  ( A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) ) ) )
9288, 89, 913syl 20 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F
) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
9386, 92mpbird 232 . . 3  |-  ( ph  ->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
94 frn 5562 . . . . . 6  |-  ( S : NN --> ( 0 [,) +oo )  ->  ran  S  C_  ( 0 [,) +oo ) )
951, 87, 943syl 20 . . . . 5  |-  ( ph  ->  ran  S  C_  (
0 [,) +oo )
)
96 icossxr 11376 . . . . 5  |-  ( 0 [,) +oo )  C_  RR*
9795, 96syl6ss 3365 . . . 4  |-  ( ph  ->  ran  S  C_  RR* )
98 ovolcl 20920 . . . . 5  |-  ( U. ran  ( (,)  o.  F
)  C_  RR  ->  ( vol* `  U. ran  ( (,)  o.  F
) )  e.  RR* )
9981, 98syl 16 . . . 4  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  e. 
RR* )
100 supxrleub 11285 . . . 4  |-  ( ( ran  S  C_  RR*  /\  ( vol* `  U. ran  ( (,)  o.  F ) )  e.  RR* )  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
10197, 99, 100syl2anc 656 . . 3  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) )
10293, 101mpbird 232 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) )
103 supxrcl 11273 . . . 4  |-  ( ran 
S  C_  RR*  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
10497, 103syl 16 . . 3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
105 xrletri3 11125 . . 3  |-  ( ( ( vol* `  U. ran  ( (,)  o.  F ) )  e. 
RR*  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR* )  ->  (
( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )  <->  ( ( vol* `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_ 
( vol* `  U. ran  ( (,)  o.  F ) ) ) ) )
10699, 104, 105syl2anc 656 . 2  |-  ( ph  ->  ( ( vol* `  U. ran  ( (,) 
o.  F ) )  =  sup ( ran 
S ,  RR* ,  <  )  <-> 
( ( vol* `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_  ( vol* `  U. ran  ( (,)  o.  F ) ) ) ) )
1075, 102, 106mpbir2and 908 1  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   <.cop 3880   U.cuni 4088   U_ciun 4168  Disj wdisj 4259   class class class wbr 4289    X. cxp 4834   dom cdm 4836   ran crn 4837    o. ccom 4840    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   Fincfn 7306   supcsup 7686   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   +oocpnf 9411   RR*cxr 9413    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   ZZ>=cuz 10857   (,)cioo 11296   [,)cico 11298   ...cfz 11433    seqcseq 11802   abscabs 12719   sum_csu 13159   vol*covol 20905   volcvol 20906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-rest 14357  df-topgen 14378  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-top 18462  df-bases 18464  df-topon 18465  df-cmp 18949  df-ovol 20907  df-vol 20908
This theorem is referenced by:  uniiccvol  21019  uniioombllem2  21022
  Copyright terms: Public domain W3C validator