MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   Unicode version

Theorem uniioombllem6 22546
Description: Lemma for uniioombl 22547. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
Assertion
Ref Expression
uniioombllem6  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Distinct variable groups:    x, F    x, G    x, A    x, C    ph, x    x, T
Allowed substitution hints:    S( x)    E( x)

Proof of Theorem uniioombllem6
Dummy variables  a 
i  j  k  n  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11194 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10968 . . . 4  |-  ( ph  ->  1  e.  ZZ )
3 uniioombl.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
4 eqidd 2452 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  =  ( T `  m
) )
5 uniioombl.t . . . . . 6  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
6 eqidd 2452 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  =  ( ( ( abs  o.  -  )  o.  G
) `  a )
)
7 uniioombl.g . . . . . . . . . 10  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
8 eqid 2451 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
98ovolfsf 22424 . . . . . . . . . 10  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo ) )
107, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,) +oo ) )
1110ffvelrnda 6022 . . . . . . . 8  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  ( 0 [,) +oo )
)
12 elrege0 11738 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  G ) `  a
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  G ) `  a
) ) )
1311, 12sylib 200 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) ) )
1413simpld 461 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  RR )
1513simprd 465 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) )
16 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
17 uniioombl.2 . . . . . . . 8  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
18 uniioombl.3 . . . . . . . 8  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
19 uniioombl.a . . . . . . . 8  |-  A  = 
U. ran  ( (,)  o.  F )
20 uniioombl.e . . . . . . . 8  |-  ( ph  ->  ( vol* `  E )  e.  RR )
21 uniioombl.s . . . . . . . 8  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
22 uniioombl.v . . . . . . . 8  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 22538 . . . . . . 7  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
248, 5ovolsf 22425 . . . . . . . . . . . . 13  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) +oo ) )
257, 24syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  T : NN --> ( 0 [,) +oo ) )
26 frn 5735 . . . . . . . . . . . 12  |-  ( T : NN --> ( 0 [,) +oo )  ->  ran  T  C_  ( 0 [,) +oo ) )
2725, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ran  T  C_  (
0 [,) +oo )
)
28 icossxr 11719 . . . . . . . . . . 11  |-  ( 0 [,) +oo )  C_  RR*
2927, 28syl6ss 3444 . . . . . . . . . 10  |-  ( ph  ->  ran  T  C_  RR* )
30 supxrub 11610 . . . . . . . . . 10  |-  ( ( ran  T  C_  RR*  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3129, 30sylan 474 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3231ralrimiva 2802 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )
33 ffn 5728 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,) +oo )  ->  T  Fn  NN )
3425, 33syl 17 . . . . . . . . 9  |-  ( ph  ->  T  Fn  NN )
35 breq1 4405 . . . . . . . . . 10  |-  ( x  =  ( T `  m )  ->  (
x  <_  sup ( ran  T ,  RR* ,  <  )  <-> 
( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
3635ralrn 6025 . . . . . . . . 9  |-  ( T  Fn  NN  ->  ( A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
3734, 36syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. x  e. 
ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) ) )
3832, 37mpbid 214 . . . . . . 7  |-  ( ph  ->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
)
39 breq2 4406 . . . . . . . . 9  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( ( T `
 m )  <_  x 
<->  ( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
4039ralbidv 2827 . . . . . . . 8  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. m  e.  NN  ( T `  m )  <_  x  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
4140rspcev 3150 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
4223, 38, 41syl2anc 667 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
431, 5, 2, 6, 14, 15, 42isumsup2 13904 . . . . 5  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR ,  <  )
)
44 rge0ssre 11740 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
4527, 44syl6ss 3444 . . . . . 6  |-  ( ph  ->  ran  T  C_  RR )
46 1nn 10620 . . . . . . . . 9  |-  1  e.  NN
47 fdm 5733 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,) +oo )  ->  dom  T  =  NN )
4825, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  T  =  NN )
4946, 48syl5eleqr 2536 . . . . . . . 8  |-  ( ph  ->  1  e.  dom  T
)
50 ne0i 3737 . . . . . . . 8  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
5149, 50syl 17 . . . . . . 7  |-  ( ph  ->  dom  T  =/=  (/) )
52 dm0rn0 5051 . . . . . . . 8  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
5352necon3bii 2676 . . . . . . 7  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
5451, 53sylib 200 . . . . . 6  |-  ( ph  ->  ran  T  =/=  (/) )
55 breq2 4406 . . . . . . . . 9  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( x  <_ 
y  <->  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
5655ralbidv 2827 . . . . . . . 8  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. x  e.  ran  T  x  <_ 
y  <->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
5756rspcev 3150 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
5823, 32, 57syl2anc 667 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
59 supxrre 11613 . . . . . 6  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. y  e.  RR  A. x  e.  ran  T  x  <_ 
y )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
6045, 54, 58, 59syl3anc 1268 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
6143, 60breqtrrd 4429 . . . 4  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR* ,  <  )
)
621, 2, 3, 4, 61climi2 13575 . . 3  |-  ( ph  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C )
631r19.2uz 13414 . . 3  |-  ( E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C  ->  E. m  e.  NN  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
6462, 63syl 17 . 2  |-  ( ph  ->  E. m  e.  NN  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)
65 1zzd 10968 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  1  e.  ZZ )
663ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  C  e.  RR+ )
67 simplrl 770 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  NN )
6867nnrpd 11339 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  RR+ )
6966, 68rpdivcld 11358 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( C  /  m )  e.  RR+ )
70 fvex 5875 . . . . . . . . . . . . . . . 16  |-  ( (,) `  ( F `  z
) )  e.  _V
7170inex1 4544 . . . . . . . . . . . . . . 15  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
7271rgenw 2749 . . . . . . . . . . . . . 14  |-  A. z  e.  NN  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  _V
73 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
7473fnmpt 5704 . . . . . . . . . . . . . 14  |-  ( A. z  e.  NN  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
_V  ->  ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) )  Fn  NN )
7572, 74mp1i 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN )
76 elfznn 11828 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
77 fvco2 5940 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN  /\  i  e.  NN )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
7875, 76, 77syl2an 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
7976adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  i  e.  NN )
80 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( z  =  i  ->  ( F `  z )  =  ( F `  i ) )
8180fveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( z  =  i  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  i )
) )
8281ineq1d 3633 . . . . . . . . . . . . . . 15  |-  ( z  =  i  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
83 fvex 5875 . . . . . . . . . . . . . . . 16  |-  ( (,) `  ( F `  i
) )  e.  _V
8483inex1 4544 . . . . . . . . . . . . . . 15  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
8582, 73, 84fvmpt 5948 . . . . . . . . . . . . . 14  |-  ( i  e.  NN  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
8679, 85syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
8786fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i ) )  =  ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
8878, 87eqtrd 2485 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
89 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  NN )
9089, 1syl6eleq 2539 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
91 inss2 3653 . . . . . . . . . . . . . 14  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  ( (,) `  ( G `  j ) )
9291a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) ) )
93 inss2 3653 . . . . . . . . . . . . . . . . . . 19  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
947adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
95 elfznn 11828 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( 1 ... m )  ->  j  e.  NN )
96 ffvelrn 6020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
9794, 95, 96syl2an 480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
9893, 97sseldi 3430 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
99 1st2nd2 6830 . . . . . . . . . . . . . . . . . 18  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
10098, 99syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
101100fveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
102 df-ov 6293 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
103101, 102syl6eqr 2503 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
104 ioossre 11696 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
105103, 104syl6eqss 3482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
106105ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
107103fveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( vol* `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
108 ovolfcl 22419 . . . . . . . . . . . . . . . . . 18  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
10994, 95, 108syl2an 480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
110 ovolioo 22521 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
111109, 110syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
112107, 111eqtrd 2485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
113109simp2d 1021 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
114109simp1d 1020 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
115113, 114resubcld 10047 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
116112, 115eqeltrd 2529 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
117116ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
118 ovolsscl 22439 . . . . . . . . . . . . 13  |-  ( ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) )  /\  ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
11992, 106, 117, 118syl3anc 1268 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
120119recnd 9669 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  CC )
12188, 90, 120fsumser 13796 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  (  seq 1
(  +  ,  ( vol*  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
) )
122121eqcomd 2457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
)  =  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
123 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( z  =  k  ->  ( F `  z )  =  ( F `  k ) )
124123fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( z  =  k  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  k )
) )
125124ineq1d 3633 . . . . . . . . . . . . 13  |-  ( z  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
126125cbvmptv 4495 . . . . . . . . . . . 12  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( k  e.  NN  |->  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
127 eqeq1 2455 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z  =  (/)  <->  x  =  (/) ) )
128 infeq1 7992 . . . . . . . . . . . . . . 15  |-  ( z  =  x  -> inf ( z ,  RR* ,  <  )  = inf ( x ,  RR* ,  <  ) )
129 supeq1 7959 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  sup ( z ,  RR* ,  <  )  =  sup ( x ,  RR* ,  <  ) )
130128, 129opeq12d 4174 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.  =  <.inf ( x , 
RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
)
131127, 130ifbieq2d 3906 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.
)  =  if ( x  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >. )
)
132131cbvmptv 4495 . . . . . . . . . . . 12  |-  ( z  e.  ran  (,)  |->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.
) )  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
13316, 17, 18, 19, 20, 3, 7, 21, 5, 22, 126, 132uniioombllem2 22540 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
13495, 133sylan2 477 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... m
) )  ->  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
135134adantlr 721 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
1361, 65, 69, 122, 135climi2 13575 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
137 1z 10967 . . . . . . . . 9  |-  1  e.  ZZ
1381rexuz3 13411 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
139137, 138ax-mp 5 . . . . . . . 8  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
140136, 139sylib 200 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
141140ralrimiva 2802 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
142 fzfi 12185 . . . . . . 7  |-  ( 1 ... m )  e. 
Fin
143 rexfiuz 13410 . . . . . . 7  |-  ( ( 1 ... m )  e.  Fin  ->  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
144142, 143ax-mp 5 . . . . . 6  |-  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
145141, 144sylibr 216 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1461rexuz3 13411 . . . . . 6  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
147137, 146ax-mp 5 . . . . 5  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
148145, 147sylibr 216 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1491r19.2uz 13414 . . . 4  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  ->  E. n  e.  NN  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
150148, 149syl 17 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. n  e.  NN  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
15116adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15217adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
15320adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( vol* `  E )  e.  RR )
1543adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  C  e.  RR+ )
1557adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15621adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  E  C_  U. ran  ( (,)  o.  G ) )
15722adantr 467 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
158 simprll 772 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  m  e.  NN )
159 simprlr 773 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
160 eqid 2451 . . . . 5  |-  U. (
( (,)  o.  G
) " ( 1 ... m ) )  =  U. ( ( (,)  o.  G )
" ( 1 ... m ) )
161 simprrl 774 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  n  e.  NN )
162 simprrr 775 . . . . . 6  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
163 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( i  =  z  ->  ( F `  i )  =  ( F `  z ) )
164163fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( i  =  z  ->  ( (,) `  ( F `  i ) )  =  ( (,) `  ( F `  z )
) )
165164ineq1d 3633 . . . . . . . . . . . . 13  |-  ( i  =  z  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
166165fveq2d 5869 . . . . . . . . . . . 12  |-  ( i  =  z  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
167166cbvsumv 13762 . . . . . . . . . . 11  |-  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
168 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
169168fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  ( G `  k )
) )
170169ineq2d 3634 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )
171170fveq2d 5869 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
172171sumeq2sdv 13770 . . . . . . . . . . 11  |-  ( j  =  k  ->  sum_ z  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
173167, 172syl5eq 2497 . . . . . . . . . 10  |-  ( j  =  k  ->  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
174169ineq1d 3633 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( (,) `  ( G `  j )
)  i^i  A )  =  ( ( (,) `  ( G `  k
) )  i^i  A
) )
175174fveq2d 5869 . . . . . . . . . 10  |-  ( j  =  k  ->  ( vol* `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) )
176173, 175oveq12d 6308 . . . . . . . . 9  |-  ( j  =  k  ->  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) )  =  (
sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )
177176fveq2d 5869 . . . . . . . 8  |-  ( j  =  k  ->  ( abs `  ( sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  =  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) ) )
178177breq1d 4412 . . . . . . 7  |-  ( j  =  k  ->  (
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
179178cbvralv 3019 . . . . . 6  |-  ( A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
180162, 179sylib 200 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
181 eqid 2451 . . . . 5  |-  U. (
( (,)  o.  F
) " ( 1 ... n ) )  =  U. ( ( (,)  o.  F )
" ( 1 ... n ) )
182151, 152, 18, 19, 153, 154, 155, 156, 5, 157, 158, 159, 160, 161, 180, 181uniioombllem5 22545 . . . 4  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( ( vol* `  ( E  i^i  A ) )  +  ( vol* `  ( E  \  A ) ) )  <_  (
( vol* `  E )  +  ( 4  x.  C ) ) )
183182anassrs 654 . . 3  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  (
n  e.  NN  /\  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )  -> 
( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
184150, 183rexlimddv 2883 . 2  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  ( ( vol* `  ( E  i^i  A ) )  +  ( vol* `  ( E  \  A ) ) )  <_  (
( vol* `  E )  +  ( 4  x.  C ) ) )
18564, 184rexlimddv 2883 1  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    \ cdif 3401    i^i cin 3403    C_ wss 3404   (/)c0 3731   ifcif 3881   <.cop 3974   U.cuni 4198  Disj wdisj 4373   class class class wbr 4402    |-> cmpt 4461    X. cxp 4832   dom cdm 4834   ran crn 4835   "cima 4837    o. ccom 4838    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   1stc1st 6791   2ndc2nd 6792   Fincfn 7569   supcsup 7954  infcinf 7955   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544   +oocpnf 9672   RR*cxr 9674    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   4c4 10661   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   (,)cioo 11635   [,)cico 11637   ...cfz 11784    seqcseq 12213   abscabs 13297    ~~> cli 13548   sum_csu 13752   vol*covol 22413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-rest 15321  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-cmp 20402  df-ovol 22416  df-vol 22418
This theorem is referenced by:  uniioombl  22547
  Copyright terms: Public domain W3C validator