MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Unicode version

Theorem uniioombllem3a 21756
Description: Lemma for uniioombl 21761. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
uniioombl.m  |-  ( ph  ->  M  e.  NN )
uniioombl.m2  |-  ( ph  ->  ( abs `  (
( T `  M
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
uniioombl.k  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
Assertion
Ref Expression
uniioombllem3a  |-  ( ph  ->  ( K  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) )  /\  ( vol* `  K )  e.  RR ) )
Distinct variable groups:    x, j, F    j, G, x    j, K, x    A, j, x    C, j, x    j, M, x    ph, j, x    T, j, x
Allowed substitution hints:    S( x, j)    E( x, j)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
2 ioof 11622 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 uniioombl.g . . . . . . 7  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
4 inss2 3719 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
5 rexpssxrxp 9638 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
64, 5sstri 3513 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
7 fss 5739 . . . . . . 7  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  G : NN --> ( RR*  X. 
RR* ) )
83, 6, 7sylancl 662 . . . . . 6  |-  ( ph  ->  G : NN --> ( RR*  X. 
RR* ) )
9 fco 5741 . . . . . 6  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  G : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  G
) : NN --> ~P RR )
102, 8, 9sylancr 663 . . . . 5  |-  ( ph  ->  ( (,)  o.  G
) : NN --> ~P RR )
11 ffun 5733 . . . . 5  |-  ( ( (,)  o.  G ) : NN --> ~P RR  ->  Fun  ( (,)  o.  G ) )
12 funiunfv 6148 . . . . 5  |-  ( Fun  ( (,)  o.  G
)  ->  U_ j  e.  ( 1 ... M
) ( ( (,) 
o.  G ) `  j )  =  U. ( ( (,)  o.  G ) " (
1 ... M ) ) )
1310, 11, 123syl 20 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U. (
( (,)  o.  G
) " ( 1 ... M ) ) )
14 elfznn 11714 . . . . . 6  |-  ( j  e.  ( 1 ... M )  ->  j  e.  NN )
15 fvco3 5944 . . . . . 6  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
163, 14, 15syl2an 477 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
1716iuneq2dv 4347 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
1813, 17eqtr3d 2510 . . 3  |-  ( ph  ->  U. ( ( (,) 
o.  G ) "
( 1 ... M
) )  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )
191, 18syl5eq 2520 . 2  |-  ( ph  ->  K  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
20 ffvelrn 6019 . . . . . . . . . . . 12  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
213, 14, 20syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
224, 21sseldi 3502 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
23 1st2nd2 6821 . . . . . . . . . 10  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
2422, 23syl 16 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
2524fveq2d 5870 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
26 df-ov 6287 . . . . . . . 8  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
2725, 26syl6eqr 2526 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
28 ioossre 11586 . . . . . . 7  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
2927, 28syl6eqss 3554 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
3029ralrimiva 2878 . . . . 5  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
31 iunss 4366 . . . . 5  |-  ( U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) 
C_  RR  <->  A. j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
3230, 31sylibr 212 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
3319, 32eqsstrd 3538 . . 3  |-  ( ph  ->  K  C_  RR )
34 fzfid 12051 . . . 4  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
3527fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( vol* `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
36 ovolfcl 21641 . . . . . . . 8  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
373, 14, 36syl2an 477 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
38 ovolioo 21741 . . . . . . 7  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
3937, 38syl 16 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
4035, 39eqtrd 2508 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
4137simp2d 1009 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
4237simp1d 1008 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
4341, 42resubcld 9987 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
4440, 43eqeltrd 2555 . . . 4  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
4534, 44fsumrecl 13519 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `
 j ) ) )  e.  RR )
4619fveq2d 5870 . . . 4  |-  ( ph  ->  ( vol* `  K )  =  ( vol* `  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) ) )
4729, 44jca 532 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )
4847ralrimiva 2878 . . . . 5  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )
49 ovolfiniun 21675 . . . . 5  |-  ( ( ( 1 ... M
)  e.  Fin  /\  A. j  e.  ( 1 ... M ) ( ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )  -> 
( vol* `  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
5034, 48, 49syl2anc 661 . . . 4  |-  ( ph  ->  ( vol* `  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
5146, 50eqbrtrd 4467 . . 3  |-  ( ph  ->  ( vol* `  K )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
52 ovollecl 21657 . . 3  |-  ( ( K  C_  RR  /\  sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `  j ) ) )  e.  RR  /\  ( vol* `  K )  <_  sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `
 j ) ) ) )  ->  ( vol* `  K )  e.  RR )
5333, 45, 51, 52syl3anc 1228 . 2  |-  ( ph  ->  ( vol* `  K )  e.  RR )
5419, 53jca 532 1  |-  ( ph  ->  ( K  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) )  /\  ( vol* `  K )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   <.cop 4033   U.cuni 4245   U_ciun 4325  Disj wdisj 4417   class class class wbr 4447    X. cxp 4997   ran crn 5000   "cima 5002    o. ccom 5003   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   1stc1st 6782   2ndc2nd 6783   Fincfn 7516   supcsup 7900   RRcr 9491   1c1 9493    + caddc 9495   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805   NNcn 10536   RR+crp 11220   (,)cioo 11529   ...cfz 11672    seqcseq 12075   abscabs 13030   sum_csu 13471   vol*covol 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-rest 14678  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-top 19194  df-bases 19196  df-topon 19197  df-cmp 19681  df-ovol 21639  df-vol 21640
This theorem is referenced by:  uniioombllem3  21757
  Copyright terms: Public domain W3C validator