MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Unicode version

Theorem uniioombllem3a 21063
Description: Lemma for uniioombl 21068. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
uniioombl.m  |-  ( ph  ->  M  e.  NN )
uniioombl.m2  |-  ( ph  ->  ( abs `  (
( T `  M
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
uniioombl.k  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
Assertion
Ref Expression
uniioombllem3a  |-  ( ph  ->  ( K  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) )  /\  ( vol* `  K )  e.  RR ) )
Distinct variable groups:    x, j, F    j, G, x    j, K, x    A, j, x    C, j, x    j, M, x    ph, j, x    T, j, x
Allowed substitution hints:    S( x, j)    E( x, j)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
2 ioof 11386 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 uniioombl.g . . . . . . 7  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
4 inss2 3570 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
5 rexpssxrxp 9427 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
64, 5sstri 3364 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
7 fss 5566 . . . . . . 7  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  G : NN --> ( RR*  X. 
RR* ) )
83, 6, 7sylancl 662 . . . . . 6  |-  ( ph  ->  G : NN --> ( RR*  X. 
RR* ) )
9 fco 5567 . . . . . 6  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  G : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  G
) : NN --> ~P RR )
102, 8, 9sylancr 663 . . . . 5  |-  ( ph  ->  ( (,)  o.  G
) : NN --> ~P RR )
11 ffun 5560 . . . . 5  |-  ( ( (,)  o.  G ) : NN --> ~P RR  ->  Fun  ( (,)  o.  G ) )
12 funiunfv 5964 . . . . 5  |-  ( Fun  ( (,)  o.  G
)  ->  U_ j  e.  ( 1 ... M
) ( ( (,) 
o.  G ) `  j )  =  U. ( ( (,)  o.  G ) " (
1 ... M ) ) )
1310, 11, 123syl 20 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U. (
( (,)  o.  G
) " ( 1 ... M ) ) )
14 elfznn 11477 . . . . . 6  |-  ( j  e.  ( 1 ... M )  ->  j  e.  NN )
15 fvco3 5767 . . . . . 6  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
163, 14, 15syl2an 477 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
1716iuneq2dv 4191 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
1813, 17eqtr3d 2476 . . 3  |-  ( ph  ->  U. ( ( (,) 
o.  G ) "
( 1 ... M
) )  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )
191, 18syl5eq 2486 . 2  |-  ( ph  ->  K  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
20 ffvelrn 5840 . . . . . . . . . . . 12  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
213, 14, 20syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
224, 21sseldi 3353 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
23 1st2nd2 6612 . . . . . . . . . 10  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
2422, 23syl 16 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
2524fveq2d 5694 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
26 df-ov 6093 . . . . . . . 8  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
2725, 26syl6eqr 2492 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
28 ioossre 11356 . . . . . . 7  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
2927, 28syl6eqss 3405 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
3029ralrimiva 2798 . . . . 5  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
31 iunss 4210 . . . . 5  |-  ( U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) 
C_  RR  <->  A. j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
3230, 31sylibr 212 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `  j )
)  C_  RR )
3319, 32eqsstrd 3389 . . 3  |-  ( ph  ->  K  C_  RR )
34 fzfid 11794 . . . 4  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
3527fveq2d 5694 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( vol* `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
36 ovolfcl 20949 . . . . . . . 8  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
373, 14, 36syl2an 477 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
38 ovolioo 21048 . . . . . . 7  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
3937, 38syl 16 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
4035, 39eqtrd 2474 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
4137simp2d 1001 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
4237simp1d 1000 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
4341, 42resubcld 9775 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
4440, 43eqeltrd 2516 . . . 4  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
4534, 44fsumrecl 13210 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `
 j ) ) )  e.  RR )
4619fveq2d 5694 . . . 4  |-  ( ph  ->  ( vol* `  K )  =  ( vol* `  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) ) )
4729, 44jca 532 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )
4847ralrimiva 2798 . . . . 5  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )
49 ovolfiniun 20983 . . . . 5  |-  ( ( ( 1 ... M
)  e.  Fin  /\  A. j  e.  ( 1 ... M ) ( ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR ) )  -> 
( vol* `  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
5034, 48, 49syl2anc 661 . . . 4  |-  ( ph  ->  ( vol* `  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
5146, 50eqbrtrd 4311 . . 3  |-  ( ph  ->  ( vol* `  K )  <_  sum_ j  e.  ( 1 ... M
) ( vol* `  ( (,) `  ( G `  j )
) ) )
52 ovollecl 20965 . . 3  |-  ( ( K  C_  RR  /\  sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `  j ) ) )  e.  RR  /\  ( vol* `  K )  <_  sum_ j  e.  ( 1 ... M ) ( vol* `  ( (,) `  ( G `
 j ) ) ) )  ->  ( vol* `  K )  e.  RR )
5333, 45, 51, 52syl3anc 1218 . 2  |-  ( ph  ->  ( vol* `  K )  e.  RR )
5419, 53jca 532 1  |-  ( ph  ->  ( K  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) )  /\  ( vol* `  K )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714    i^i cin 3326    C_ wss 3327   ~Pcpw 3859   <.cop 3882   U.cuni 4090   U_ciun 4170  Disj wdisj 4261   class class class wbr 4291    X. cxp 4837   ran crn 4840   "cima 4842    o. ccom 4843   Fun wfun 5411   -->wf 5413   ` cfv 5417  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   Fincfn 7309   supcsup 7689   RRcr 9280   1c1 9282    + caddc 9284   RR*cxr 9416    < clt 9417    <_ cle 9418    - cmin 9594   NNcn 10321   RR+crp 10990   (,)cioo 11299   ...cfz 11436    seqcseq 11805   abscabs 12722   sum_csu 13162   vol*covol 20945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-er 7100  df-map 7215  df-pm 7216  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fi 7660  df-sup 7690  df-oi 7723  df-card 8108  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ioo 11303  df-ico 11305  df-icc 11306  df-fz 11437  df-fzo 11548  df-fl 11641  df-seq 11806  df-exp 11865  df-hash 12103  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-clim 12965  df-rlim 12966  df-sum 13163  df-rest 14360  df-topgen 14381  df-psmet 17808  df-xmet 17809  df-met 17810  df-bl 17811  df-mopn 17812  df-top 18502  df-bases 18504  df-topon 18505  df-cmp 18989  df-ovol 20947  df-vol 20948
This theorem is referenced by:  uniioombllem3  21064
  Copyright terms: Public domain W3C validator