MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Unicode version

Theorem uniioombllem2 21755
Description: Lemma for uniioombl 21761. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
uniioombllem2.h  |-  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
uniioombllem2.k  |-  K  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
uniioombllem2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  H
) )  ~~>  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) ) )
Distinct variable groups:    x, z, F    x, G, z    x, K, z    x, A, z   
x, C, z    x, H, z    x, J, z    ph, x, z    x, T, z
Allowed substitution hints:    S( x, z)    E( x, z)

Proof of Theorem uniioombllem2
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11117 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 eqid 2467 . . 3  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )
3 1zzd 10895 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  1  e.  ZZ )
4 eqidd 2468 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  =  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) )
5 uniioombl.1 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
6 uniioombl.2 . . . . . . . . . . 11  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
7 uniioombl.3 . . . . . . . . . . 11  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
8 uniioombl.a . . . . . . . . . . 11  |-  A  = 
U. ran  ( (,)  o.  F )
9 uniioombl.e . . . . . . . . . . 11  |-  ( ph  ->  ( vol* `  E )  e.  RR )
10 uniioombl.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
11 uniioombl.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
12 uniioombl.s . . . . . . . . . . 11  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
13 uniioombl.t . . . . . . . . . . 11  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
14 uniioombl.v . . . . . . . . . . 11  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 21754 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,) )
16 inss2 3719 . . . . . . . . . . . . 13  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( G `  J ) )
1716a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( G `  J ) ) )
18 inss2 3719 . . . . . . . . . . . . . . . . 17  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
1911ffvelrnda 6021 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2018, 19sseldi 3502 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  ( RR  X.  RR ) )
21 1st2nd2 6821 . . . . . . . . . . . . . . . 16  |-  ( ( G `  J )  e.  ( RR  X.  RR )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
2322fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. ) )
24 df-ov 6287 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. )
2523, 24syl6eqr 2526 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) )
26 ioossre 11586 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) )  C_  RR
2725, 26syl6eqss 3554 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  C_  RR )
2825fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  =  ( vol* `  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) ) )
29 ovolfcl 21641 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  J  e.  NN )  ->  (
( 1st `  ( G `  J )
)  e.  RR  /\  ( 2nd `  ( G `
 J ) )  e.  RR  /\  ( 1st `  ( G `  J ) )  <_ 
( 2nd `  ( G `  J )
) ) )
3011, 29sylan 471 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( 1st `  ( G `
 J ) )  e.  RR  /\  ( 2nd `  ( G `  J ) )  e.  RR  /\  ( 1st `  ( G `  J
) )  <_  ( 2nd `  ( G `  J ) ) ) )
31 ovolioo 21741 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( G `  J )
)  e.  RR  /\  ( 2nd `  ( G `
 J ) )  e.  RR  /\  ( 1st `  ( G `  J ) )  <_ 
( 2nd `  ( G `  J )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3230, 31syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( 1st `  ( G `  J ) ) (,) ( 2nd `  ( G `  J )
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3328, 32eqtrd 2508 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3430simp2d 1009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( 2nd `  ( G `  J
) )  e.  RR )
3530simp1d 1008 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( 1st `  ( G `  J
) )  e.  RR )
3634, 35resubcld 9987 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( 2nd `  ( G `
 J ) )  -  ( 1st `  ( G `  J )
) )  e.  RR )
3733, 36eqeltrd 2555 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  e.  RR )
38 ovolsscl 21660 . . . . . . . . . . . 12  |-  ( ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  C_  ( (,) `  ( G `
 J ) )  /\  ( (,) `  ( G `  J )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  J
) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
3917, 27, 37, 38syl3anc 1228 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
4039adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
41 uniioombllem2.k . . . . . . . . . . 11  |-  K  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
4241ioorcl 21749 . . . . . . . . . 10  |-  ( ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,)  /\  ( vol* `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
4315, 40, 42syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
44 eqid 2467 . . . . . . . . 9  |-  ( z  e.  NN  |->  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) )  =  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) )
4543, 44fmptd 6045 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( z  e.  NN  |->  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
46 uniioombllem2.h . . . . . . . . . . 11  |-  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
4746a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
4841ioorf 21745 . . . . . . . . . . . 12  |-  K : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
4948a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  K : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
) )
5049feqmptd 5920 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  K  =  ( y  e.  ran  (,)  |->  ( K `  y
) ) )
51 fveq2 5866 . . . . . . . . . 10  |-  ( y  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) )  ->  ( K `  y )  =  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) )
5215, 47, 50, 51fmptco 6054 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  ( K  o.  H )  =  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) )
5352feq1d 5717 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  <->  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
5445, 53mpbird 232 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
55 eqid 2467 . . . . . . . 8  |-  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( abs  o.  -  )  o.  ( K  o.  H ) )
5655ovolfsf 21646 . . . . . . 7  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  ( K  o.  H
) ) : NN --> ( 0 [,) +oo ) )
5754, 56syl 16 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) : NN --> ( 0 [,) +oo ) )
5857ffvelrnda 6021 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  ( 0 [,) +oo ) )
59 elrege0 11627 . . . . 5  |-  ( ( ( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) ) )
6058, 59sylib 196 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) ) )
6160simpld 459 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  RR )
6260simprd 463 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  0  <_  ( ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) `  n
) )
6352fveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( K  o.  H ) `
 z )  =  ( ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) `  z ) )
64 fvex 5876 . . . . . . . . . . . . . . . 16  |-  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )  e.  _V
6544fvmpt2 5957 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e. 
_V )  ->  (
( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) `
 z )  =  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6664, 65mpan2 671 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  (
( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) `
 z )  =  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6763, 66sylan9eq 2528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( K  o.  H
) `  z )  =  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6867fveq2d 5870 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( (,) `  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) )
6941ioorinv 21748 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,)  ->  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
7015, 69syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
7168, 70eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
7271ralrimiva 2878 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  A. z  e.  NN  ( (,) `  (
( K  o.  H
) `  z )
)  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
73 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( K  o.  H
) `  z )  =  ( ( K  o.  H ) `  x ) )
7473fveq2d 5870 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( (,) `  (
( K  o.  H
) `  x )
) )
75 fveq2 5866 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
7675fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  x )
) )
7776ineq1d 3699 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) )
7874, 77eqeq12d 2489 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( (,) `  (
( K  o.  H
) `  z )
)  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  <->  ( (,) `  ( ( K  o.  H ) `  x
) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
7978rspccva 3213 . . . . . . . . . . 11  |-  ( ( A. z  e.  NN  ( (,) `  ( ( K  o.  H ) `
 z ) )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) )  /\  x  e.  NN )  ->  ( (,) `  (
( K  o.  H
) `  x )
)  =  ( ( (,) `  ( F `
 x ) )  i^i  ( (,) `  ( G `  J )
) ) )
8072, 79sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  x  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  x ) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) )
81 inss1 3718 . . . . . . . . . 10  |-  ( ( (,) `  ( F `
 x ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( F `  x ) )
8280, 81syl6eqss 3554 . . . . . . . . 9  |-  ( ( ( ph  /\  J  e.  NN )  /\  x  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  x ) )  C_  ( (,) `  ( F `
 x ) ) )
8382ralrimiva 2878 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  A. x  e.  NN  ( (,) `  (
( K  o.  H
) `  x )
)  C_  ( (,) `  ( F `  x
) ) )
846adantr 465 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  -> Disj  x  e.  NN  ( (,) `  ( F `  x )
) )
85 disjss2 4420 . . . . . . . 8  |-  ( A. x  e.  NN  ( (,) `  ( ( K  o.  H ) `  x ) )  C_  ( (,) `  ( F `
 x ) )  ->  (Disj  x  e.  NN  ( (,) `  ( F `
 x ) )  -> Disj  x  e.  NN  ( (,) `  ( ( K  o.  H ) `  x ) ) ) )
8683, 84, 85sylc 60 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  -> Disj  x  e.  NN  ( (,) `  (
( K  o.  H
) `  x )
) )
8754, 86, 2uniioovol 21751 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  U. ran  ( (,)  o.  ( K  o.  H ) ) )  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
8870mpteq2dva 4533 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( z  e.  NN  |->  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) )  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
89 rexpssxrxp 9638 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
9018, 89sstri 3513 . . . . . . . . . . . . 13  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
9190, 43sseldi 3502 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  ( RR*  X.  RR* )
)
92 ioof 11622 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
9392a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  (,) :
( RR*  X.  RR* ) --> ~P RR )
9493feqmptd 5920 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  (,)  =  ( y  e.  (
RR*  X.  RR* )  |->  ( (,) `  y ) ) )
95 fveq2 5866 . . . . . . . . . . . 12  |-  ( y  =  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )  ->  ( (,) `  y
)  =  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) )
9691, 52, 94, 95fmptco 6054 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  ( K  o.  H ) )  =  ( z  e.  NN  |->  ( (,) `  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) ) ) )
9788, 96, 473eqtr4d 2518 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  ( K  o.  H ) )  =  H )
9897rneqd 5230 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  ran  ( (,)  o.  ( K  o.  H ) )  =  ran  H )
9998unieqd 4255 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  U. ran  ( (,)  o.  ( K  o.  H ) )  =  U. ran  H
)
100 fvex 5876 . . . . . . . . . . . . . 14  |-  ( (,) `  ( F `  z
) )  e.  _V
101100inex1 4588 . . . . . . . . . . . . 13  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  e.  _V
10246fvmpt2 5957 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
_V )  ->  ( H `  z )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )
103101, 102mpan2 671 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  ( H `  z )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )
104 incom 3691 . . . . . . . . . . . 12  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  =  ( ( (,) `  ( G `  J )
)  i^i  ( (,) `  ( F `  z
) ) )
105103, 104syl6eq 2524 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  ( H `  z )  =  ( ( (,) `  ( G `  J
) )  i^i  ( (,) `  ( F `  z ) ) ) )
106105iuneq2i 4344 . . . . . . . . . 10  |-  U_ z  e.  NN  ( H `  z )  =  U_ z  e.  NN  (
( (,) `  ( G `  J )
)  i^i  ( (,) `  ( F `  z
) ) )
107 iunin2 4389 . . . . . . . . . 10  |-  U_ z  e.  NN  ( ( (,) `  ( G `  J
) )  i^i  ( (,) `  ( F `  z ) ) )  =  ( ( (,) `  ( G `  J
) )  i^i  U_ z  e.  NN  ( (,) `  ( F `  z ) ) )
108106, 107eqtri 2496 . . . . . . . . 9  |-  U_ z  e.  NN  ( H `  z )  =  ( ( (,) `  ( G `  J )
)  i^i  U_ z  e.  NN  ( (,) `  ( F `  z )
) )
10915, 46fmptd 6045 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  H : NN
--> ran  (,) )
110 ffn 5731 . . . . . . . . . . 11  |-  ( H : NN --> ran  (,)  ->  H  Fn  NN )
111109, 110syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  H  Fn  NN )
112 fniunfv 6147 . . . . . . . . . 10  |-  ( H  Fn  NN  ->  U_ z  e.  NN  ( H `  z )  =  U. ran  H )
113111, 112syl 16 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( H `  z )  =  U. ran  H )
114108, 113syl5eqr 2522 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  U_ z  e.  NN  ( (,) `  ( F `
 z ) ) )  =  U. ran  H )
1155adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
116 fvco3 5944 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  z  e.  NN )  ->  (
( (,)  o.  F
) `  z )  =  ( (,) `  ( F `  z )
) )
117115, 116sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,)  o.  F
) `  z )  =  ( (,) `  ( F `  z )
) )
118117iuneq2dv 4347 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U_ z  e.  NN  ( (,) `  ( F `  z ) ) )
119 ffn 5731 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
12092, 119ax-mp 5 . . . . . . . . . . . . 13  |-  (,)  Fn  ( RR*  X.  RR* )
121 fss 5739 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
122115, 90, 121sylancl 662 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  F : NN
--> ( RR*  X.  RR* )
)
123 fnfco 5750 . . . . . . . . . . . . 13  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( (,)  o.  F )  Fn  NN )
124120, 122, 123sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  F )  Fn  NN )
125 fniunfv 6147 . . . . . . . . . . . 12  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U. ran  ( (,)  o.  F
) )
126124, 125syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U. ran  ( (,)  o.  F
) )
127126, 8syl6eqr 2526 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  A )
128118, 127eqtr3d 2510 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( (,) `  ( F `  z )
)  =  A )
129128ineq2d 3700 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  U_ z  e.  NN  ( (,) `  ( F `
 z ) ) )  =  ( ( (,) `  ( G `
 J ) )  i^i  A ) )
13099, 114, 1293eqtr2d 2514 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  U. ran  ( (,)  o.  ( K  o.  H ) )  =  ( ( (,) `  ( G `  J
) )  i^i  A
) )
131130fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  U. ran  ( (,)  o.  ( K  o.  H ) ) )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
13287, 131eqtr3d 2510 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
133 inss1 3718 . . . . . . 7  |-  ( ( (,) `  ( G `
 J ) )  i^i  A )  C_  ( (,) `  ( G `
 J ) )
134133a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  A )  C_  ( (,) `  ( G `
 J ) ) )
135 ovolsscl 21660 . . . . . 6  |-  ( ( ( ( (,) `  ( G `  J )
)  i^i  A )  C_  ( (,) `  ( G `  J )
)  /\  ( (,) `  ( G `  J
) )  C_  RR  /\  ( vol* `  ( (,) `  ( G `
 J ) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
)  e.  RR )
136134, 27, 37, 135syl3anc 1228 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) )  e.  RR )
137132, 136eqeltrd 2555 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  e.  RR )
13855, 2ovolsf 21647 . . . . . . . . 9  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo ) )
13954, 138syl 16 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) : NN --> ( 0 [,) +oo ) )
140 ffn 5731 . . . . . . . 8  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  Fn  NN )
141139, 140syl 16 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  Fn  NN )
142 fnfvelrn 6018 . . . . . . 7  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  Fn  NN  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )
143141, 142sylan 471 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )
144 frn 5737 . . . . . . . . 9  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) 
C_  ( 0 [,) +oo ) )
145139, 144syl 16 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  (
0 [,) +oo )
)
146 icossxr 11609 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR*
147145, 146syl6ss 3516 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  RR* )
148 supxrub 11516 . . . . . . 7  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  C_  RR* 
/\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) )  ->  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )
)
149147, 148sylan 471 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )  -> 
(  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
150143, 149syldan 470 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
151150ralrimiva 2878 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )
)
152 breq2 4451 . . . . . 6  |-  ( x  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  -> 
( (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x 
<->  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) ) )
153152ralbidv 2903 . . . . 5  |-  ( x  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  -> 
( A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x 
<-> 
A. y  e.  NN  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) ) )
154153rspcev 3214 . . . 4  |-  ( ( sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR* ,  <  )  e.  RR  /\ 
A. y  e.  NN  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )  ->  E. x  e.  RR  A. y  e.  NN  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  <_  x )
155137, 151, 154syl2anc 661 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  E. x  e.  RR  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x )
1561, 2, 3, 4, 61, 62, 155isumsup2 13621 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  ~~>  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
15755ovolfs2 21743 . . . . 5  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( vol*  o.  (,) )  o.  ( K  o.  H )
) )
15854, 157syl 16 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( vol*  o.  (,) )  o.  ( K  o.  H )
) )
159 coass 5526 . . . . 5  |-  ( ( vol*  o.  (,) )  o.  ( K  o.  H ) )  =  ( vol*  o.  ( (,)  o.  ( K  o.  H ) ) )
16097coeq2d 5165 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol*  o.  ( (,)  o.  ( K  o.  H
) ) )  =  ( vol*  o.  H ) )
161159, 160syl5eq 2520 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( vol*  o.  (,) )  o.  ( K  o.  H ) )  =  ( vol*  o.  H ) )
162158, 161eqtrd 2508 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( vol*  o.  H
) )
163162seqeq3d 12083 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  seq 1 (  +  ,  ( vol*  o.  H )
) )
164 0re 9596 . . . . . 6  |-  0  e.  RR
165 pnfxr 11321 . . . . . 6  |- +oo  e.  RR*
166 icossre 11605 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
167164, 165, 166mp2an 672 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
168145, 167syl6ss 3516 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  RR )
169 1nn 10547 . . . . . . 7  |-  1  e.  NN
170 fdm 5735 . . . . . . . 8  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  NN )
171139, 170syl 16 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  dom  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =  NN )
172169, 171syl5eleqr 2562 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  1  e. 
dom  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) )
173 ne0i 3791 . . . . . 6  |-  ( 1  e.  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  ->  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =/=  (/) )
174172, 173syl 16 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  dom  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =/=  (/) )
175 dm0rn0 5219 . . . . . 6  |-  ( dom 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  =  (/) 
<->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  =  (/) )
176175necon3bii 2735 . . . . 5  |-  ( dom 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  =/=  (/) 
<->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  =/=  (/) )
177174, 176sylib 196 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =/=  (/) )
178 breq1 4450 . . . . . . . 8  |-  ( z  =  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  -> 
( z  <_  x  <->  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  x
) )
179178ralrn 6024 . . . . . . 7  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  Fn  NN  ->  ( A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x  <->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
180141, 179syl 16 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( A. z  e.  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) z  <_  x  <->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
181180rexbidv 2973 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( E. x  e.  RR  A. z  e.  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) z  <_  x  <->  E. x  e.  RR  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
182155, 181mpbird 232 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x )
183 supxrre 11519 . . . 4  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  C_  RR  /\  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x )  ->  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
184168, 177, 182, 183syl3anc 1228 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
185184, 132eqtr3d 2510 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) ,  RR ,  <  )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
186156, 163, 1853brtr3d 4476 1  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  H
) )  ~~>  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   <.cop 4033   U.cuni 4245   U_ciun 4325  Disj wdisj 4417   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    o. ccom 5003    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   1stc1st 6782   2ndc2nd 6783   supcsup 7900   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495   +oocpnf 9625   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805   NNcn 10536   RR+crp 11220   (,)cioo 11529   [,)cico 11531    seqcseq 12075   abscabs 13030    ~~> cli 13270   vol*covol 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-rest 14678  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-top 19194  df-bases 19196  df-topon 19197  df-cmp 19681  df-ovol 21639  df-vol 21640
This theorem is referenced by:  uniioombllem6  21760
  Copyright terms: Public domain W3C validator