MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniinqs Structured version   Visualization version   Unicode version

Theorem uniinqs 7448
Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4221. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.)
Hypothesis
Ref Expression
uniinqs.1  |-  R  Er  X
Assertion
Ref Expression
uniinqs  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  U. ( B  i^i  C )  =  ( U. B  i^i  U. C ) )

Proof of Theorem uniinqs
Dummy variables  b 
c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniin 4221 . . 3  |-  U. ( B  i^i  C )  C_  ( U. B  i^i  U. C )
21a1i 11 . 2  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  U. ( B  i^i  C )  C_  ( U. B  i^i  U. C ) )
3 eluni2 4205 . . . . . 6  |-  ( x  e.  U. B  <->  E. b  e.  B  x  e.  b )
4 eluni2 4205 . . . . . 6  |-  ( x  e.  U. C  <->  E. c  e.  C  x  e.  c )
53, 4anbi12i 704 . . . . 5  |-  ( ( x  e.  U. B  /\  x  e.  U. C
)  <->  ( E. b  e.  B  x  e.  b  /\  E. c  e.  C  x  e.  c ) )
6 elin 3619 . . . . 5  |-  ( x  e.  ( U. B  i^i  U. C )  <->  ( x  e.  U. B  /\  x  e.  U. C ) )
7 reeanv 2960 . . . . 5  |-  ( E. b  e.  B  E. c  e.  C  (
x  e.  b  /\  x  e.  c )  <->  ( E. b  e.  B  x  e.  b  /\  E. c  e.  C  x  e.  c ) )
85, 6, 73bitr4i 281 . . . 4  |-  ( x  e.  ( U. B  i^i  U. C )  <->  E. b  e.  B  E. c  e.  C  ( x  e.  b  /\  x  e.  c ) )
9 simp3l 1037 . . . . . . 7  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  ->  x  e.  b )
10 simp2l 1035 . . . . . . . 8  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
b  e.  B )
11 inelcm 3821 . . . . . . . . . . 11  |-  ( ( x  e.  b  /\  x  e.  c )  ->  ( b  i^i  c
)  =/=  (/) )
12113ad2ant3 1032 . . . . . . . . . 10  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
( b  i^i  c
)  =/=  (/) )
13 uniinqs.1 . . . . . . . . . . . . . 14  |-  R  Er  X
1413a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  ->  R  Er  X )
15 simp1l 1033 . . . . . . . . . . . . . 14  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  ->  B  C_  ( A /. R ) )
1615, 10sseldd 3435 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
b  e.  ( A /. R ) )
17 simp1r 1034 . . . . . . . . . . . . . 14  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  ->  C  C_  ( A /. R ) )
18 simp2r 1036 . . . . . . . . . . . . . 14  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
c  e.  C )
1917, 18sseldd 3435 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
c  e.  ( A /. R ) )
2014, 16, 19qsdisj 7445 . . . . . . . . . . . 12  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
( b  =  c  \/  ( b  i^i  c )  =  (/) ) )
2120ord 379 . . . . . . . . . . 11  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
( -.  b  =  c  ->  ( b  i^i  c )  =  (/) ) )
2221necon1ad 2643 . . . . . . . . . 10  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
( ( b  i^i  c )  =/=  (/)  ->  b  =  c ) )
2312, 22mpd 15 . . . . . . . . 9  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
b  =  c )
2423, 18eqeltrd 2531 . . . . . . . 8  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
b  e.  C )
2510, 24elind 3620 . . . . . . 7  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  -> 
b  e.  ( B  i^i  C ) )
26 elunii 4206 . . . . . . 7  |-  ( ( x  e.  b  /\  b  e.  ( B  i^i  C ) )  ->  x  e.  U. ( B  i^i  C ) )
279, 25, 26syl2anc 667 . . . . . 6  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
)  /\  ( x  e.  b  /\  x  e.  c ) )  ->  x  e.  U. ( B  i^i  C ) )
28273expia 1211 . . . . 5  |-  ( ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R ) )  /\  ( b  e.  B  /\  c  e.  C
) )  ->  (
( x  e.  b  /\  x  e.  c )  ->  x  e.  U. ( B  i^i  C
) ) )
2928rexlimdvva 2888 . . . 4  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  ( E. b  e.  B  E. c  e.  C  ( x  e.  b  /\  x  e.  c
)  ->  x  e.  U. ( B  i^i  C
) ) )
308, 29syl5bi 221 . . 3  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  (
x  e.  ( U. B  i^i  U. C )  ->  x  e.  U. ( B  i^i  C ) ) )
3130ssrdv 3440 . 2  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  ( U. B  i^i  U. C
)  C_  U. ( B  i^i  C ) )
322, 31eqssd 3451 1  |-  ( ( B  C_  ( A /. R )  /\  C  C_  ( A /. R
) )  ->  U. ( B  i^i  C )  =  ( U. B  i^i  U. C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624   E.wrex 2740    i^i cin 3405    C_ wss 3406   (/)c0 3733   U.cuni 4201    Er wer 7365   /.cqs 7367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-br 4406  df-opab 4465  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-er 7368  df-ec 7370  df-qs 7374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator